1. Rajan K. Materials informatics. Materials Today 2005;8:38-45.
2. Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater 2021;6:730-55.
3. Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the "fourth paradigm" of science in materials science. APL Mater 2016;4:053208.
4. Kalidindi SR, Niezgoda SR, Salem AA. Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 2011;63:34-41.
5. Kalidindi SR, De Graef M. Materials data science: current status and future outlook. Annu Rev Mater Res 2015;45:171-93.
6. Arróyave R, Mcdowell DL. Systems approaches to materials design: past, present, and future. Annu Rev Mater Res 2019;49:103-26.
7. Hu X, Li J, Wang Z, Wang J. A microstructure-informatic strategy for Vickers hardness forecast of austenitic steels from experimental data. Materials & Design 2021;201:109497.
8. Molkeri A, Khatamsaz D, Couperthwaite R, et al. On the importance of microstructure information in materials design: PSP vs PP. Acta Materialia 2022;223:117471.
9. Khatavkar N, Swetlana S, Singh AK. Accelerated prediction of Vickers hardness of Co- and Ni-based superalloys from microstructure and composition using advanced image processing techniques and machine learning. Acta Materialia 2020;196:295-303.
10. Shen C, Wang C, Wei X, Li Y, van der Zwaag S, Xu W. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Materialia 2019;179:201-14.
11. Shin D, Yamamoto Y, Brady M, Lee S, Haynes J. Modern data analytics approach to predict creep of high-temperature alloys. Acta Materialia 2019;168:321-30.
12. Peng J, Yamamoto Y, Hawk JA, Lara-curzio E, Shin D. Coupling physics in machine learning to predict properties of high-temperatures alloys. npj Comput Mater 2020:6.
13. Hu X, Wang J, Wang Y, et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning. Computational Materials Science 2018;155:331-9.
14. Niezgoda SR, Kanjarla AK, Kalidindi SR. Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integr Mater Manuf Innov 2013;2:54-80.
15. Sangid MD, Ravi P, Prithivirajan V, Miller NA, Kenesei P, Park J. ICME approach to determining critical pore size of IN718 produced by selective laser melting. JOM 2020;72:465-74.
16. Zinovieva O, Romanova V, Balokhonov R. Effects of scanning pattern on the grain structure and elastic properties of additively manufactured 316L austenitic stainless steel. Materials Science and Engineering: A 2022;832:142447.
17. Popova E, Rodgers TM, Gong X, Cecen A, Madison JD, Kalidindi SR. Process-structure linkages using a data science approach: application to simulated additive manufacturing data. Integr Mater Manuf Innov 2017;6:54-68.
18. Yabansu YC, Rehn V, Hötzer J, Nestler B, Kalidindi SR. Application of Gaussian process autoregressive models for capturing the time evolution of microstructure statistics from phase-field simulations for sintering of polycrystalline ceramics. Modelling Simul Mater Sci Eng 2019;27:084006.
19. Latypov MI, Kühbach M, Beyerlein IJ, et al. Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Materials Characterization 2018;145:671-85.
20. Turner DM, Niezgoda SR, Kalidindi SR. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Modelling Simul Mater Sci Eng 2016;24:075002.
21. Yucel B, Yucel S, Ray A, Duprez L, Kalidindi SR. Mining the correlations between optical micrographs and mechanical properties of cold-rolled HSLA steels using machine learning approaches. Integr Mater Manuf Innov 2020;9:240-56.
22. Niezgoda S, Fullwood D, Kalidindi S. Delineation of the space of 2-point correlations in a composite material system. Acta Materialia 2008;56:5285-92.
23. Cecen A, Yabansu YC, Kalidindi SR. A new framework for rotationally invariant two-point spatial correlations in microstructure datasets. Acta Materialia 2018;158:53-64.
24. Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR. Microstructure sensitive design for performance optimization. Progress in Materials Science 2010;55:477-562.
25. Brough DB, Wheeler D, Warren JA, Kalidindi SR. Microstructure-based knowledge systems for capturing process-structure evolution linkages. Current Opinion in Solid State and Materials Science 2017;21:129-40.
26. Fullwood DT, Niezgoda SR, Kalidindi SR. Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Materialia 2008;56:942-8.
27. Bostanabad R, Zhang Y, Li X, et al. Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Progress in Materials Science 2018;95:1-41.
28. Niezgoda SR, Turner DM, Fullwood DT, Kalidindi SR. Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Materialia 2010;58:4432-45.
29. Khosravani A, Cecen A, Kalidindi SR. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: Application to dual-phase steels. Acta Materialia 2017;123:55-69.
30. Steinmetz P, Yabansu YC, Hötzer J, Jainta M, Nestler B, Kalidindi SR. Analytics for microstructure datasets produced by phase-field simulations. Acta Materialia 2016;103:192-203.
31. Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi SR. Application of Gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys. Acta Materialia 2019;178:45-58.
32. Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR. Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Materialia 2018;144:758-67.
33. Gorgannejad S, Reisi Gahrooei M, Paynabar K, Neu R. Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression. Acta Materialia 2019;165:259-69.
34. Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B. Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Materialia 2017;124:182-94.
35. Tewari A, Gokhale A, Spowart J, Miracle D. Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Materialia 2004;52:307-19.
36. Jung J, Yoon JI, Park HK, Kim JY, Kim HS. Bayesian approach in predicting mechanical properties of materials: application to dual phase steels. Materials Science and Engineering: A 2019;743:382-90.
37. Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR. Structure-property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Materialia 2015;91:239-54.
38. Bro R, Smilde AK. Principal component analysis. Anal Methods 2014;6:2812-31.
39. Fast T, Wodo O, Ganapathysubramanian B, Kalidindi SR. Microstructure taxonomy based on spatial correlations: application to microstructure coarsening. Acta Materialia 2016;108:176-85.
40. Kunselman C, Attari V, Mcclenny L, Braga-neto U, Arroyave R. Semi-supervised learning approaches to class assignment in ambiguous microstructures. Acta Materialia 2020;188:49-62.
41. Kitahara AR, Holm EA. Microstructure cluster analysis with transfer learning and unsupervised learning. Integr Mater Manuf Innov 2018;7:148-56.
42. Liu Q, Wu H, Paul MJ, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms. Acta Materialia 2020;201:316-28.
43. Choudhury A, Yabansu YC, Kalidindi SR, Dennstedt A. Quantification and classification of microstructures in ternary eutectic alloys using 2-point spatial correlations and principal component analyses. Acta Materialia 2016;110:131-41.
44. Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system. Acta Materialia 2020;182:278-86.
45. Zheng T, Hu X, He F, et al. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. Journal of Materials Science & Technology 2021;69:156-67.
46. Nelson J, Sanvito S. Predicting the Curie temperature of ferromagnets using machine learning. Phys Rev Materials 2019:3.
47. Mukhamedov BO, Karavaev KV, Abrikosov IA. Machine learning prediction of thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys. Phys Rev Materials 2021:5.
48. Hu X, Zhao J, Li J, Wang Z, Chen Y, Wang J. Global-oriented strategy for searching ultrastrength martensitic stainless steels. Advcd Theory and Sims 2022;5:2100411.
49. Masuyama F. Advances in physical metallurgy and processing of steels. ISIJ International 2001;41:612-25.
50. Konadu DS, Pistorius PGH. Investigation of formation of precipitates and solidification temperatures of ferritic stainless steels using differential scanning calorimetry and Thermo-Calc simulation. Sadhana 2021:46.
51. Rojas D, Garcia J, Prat O, Sauthoff G, Kaysser-pyzalla A. 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650℃. Materials Science and Engineering: A 2011;528:5164-76.
52. Knezevic V, Sauthoff G, Vilk J, et al. Martensitic/Ferritic super heat-resistant 650.DEG.C. steels. Design and testing of model alloys. ISIJ International 2002;42:1505-14.
53. Li X, Kuang W, Zhang J, Zhou Q, Wang H. Application of the thermodynamic extremal principle to massive transformations in Fe-C alloys. Metall and Mat Trans A 2018;49:4484-94.
54. Zhong Z, Gu Y, Yuan Y. Microstructural stability and mechanical properties of a newly developed Ni-Fe-base superalloy. Materials Science and Engineering: A 2015;622:101-7.
55. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst, Man, Cybern 1979;9:62-6.
56. van der Walt S, Schönberger JL, Nunez-Iglesias J, et al. Scikit-image: image processing in python. PeerJ 2014;2:e453.
57. Marquardt DW, Snee RD. Ridge regression in practice. The American Statistician 1975;29:3-20.
59. Li J, Wang Z, Wang Y, Wang J. Phase-field study of competitive dendritic growth of converging grains during directional solidification. Acta Materialia 2012;60:1478-93.
60. Guo C, Li J, Yu H, Wang Z, Lin X, Wang J. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains. Acta Materialia 2017;136:148-63.
61. Wang Y, Li J, Yang H, et al. The formation mechanism of special globular surface grain during the solidification of laser surface remelted near β titanium alloys. Computational Materials Science 2021;191:110353.
62. Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73:066122.
63. Farzadi A, Do-quang M, Serajzadeh S, Kokabi AH, Amberg G. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy. Modelling Simul Mater Sci Eng 2008;16:065005.
64. Wang F, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 2011;57:597-603.
65. Zinovieva O, Zinoviev A, Romanova V, Balokhonov R. Three-dimensional analysis of grain structure and texture of additively manufactured 316L austenitic stainless steel. Additive Manufacturing 2020;36:101521.
66. Schwarze C, Darvishi Kamachali R, Kühbach M, et al. Computationally efficient phase-field simulation studies using RVE sampling and statistical analysis. Computational Materials Science 2018;147:204-16.
67. Wang Y, Li J, Zhang L, Wang Z, Wang J. Phase-field study on the effect of initial particle aggregation on the transient coarsening behaviors. Modelling Simul Mater Sci Eng 2020;28:075007.
68. Liu Y, Wu J, Wang Z, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Materialia 2020;195:454-67.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.