REFERENCES

1. Oh HS, Kim SJ, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat Commun 2019;10:2090.

2. Cantor B. Multicomponent and high entropy alloys. Entropy 2014;16:4749.

3. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-377:213-8.

4. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

5. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater 2019;4:515-34.

6. Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system. Acta Mater 2020;182:278-86.

7. Chanda B, Verma A, Das J. Nano-/ultrafine eutectic in CoCrFeNi(Nb/Ta) high-entropy alloys. Trans Indian Inst Met 2018;71:2717-23.

8. Zhang H, Liu P, Hou J, Qiao J, Wu Y. Prediction of strength and ductility in partially recrystallized CoCrFeNiTi0.2 high-entropy alloy. Entropy 2019;21:389.

9. Zhou K, Li J, Wang L, Yang H, Wang Z, Wang J. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics 2019;114:106592.

10. Poletti MG, Fiore G, Gili F, Mangherini D, Battezzati L. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater Design 2017;115:247-54.

11. Xiao J, Tan H, Chen J, Martini A, Zhang C. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys. J Alloys Compd 2020;847:156533.

12. Cui Y, Shen J, Manladan SM, Geng K, Hu S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl Surf Sci 2020;512:145736.

13. Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: a review. Metals 2017;7:43.

14. Li R, Xie L, Wang WY, Liaw PK, Zhang Y. High-throughput calculations for high-entropy alloys: a brief review. Front Mater 2020;7:290.

15. Yin Y, Chen Z, Mo N, et al. High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy. Mater Sci Eng A 2020;788:139580.

16. Ma Y, Wu S, Jia Y, et al. Hexagonal closed-packed precipitation enhancement in a NbTiHfZr refractory high-entropy alloy. Metals 2019;9:485.

17. Liu Z, Zhao D, Wang P, et al. Additive manufacturing of metals: microstructure evolution and multistage control. J Mater Sci Technol 2022;100:224-36.

18. Fu C, Li J, Bai J, et al. Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high temperature He ions irradiation. J Nucl Mater 2021;550:152948.

19. Farshidianfar MH, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 2016;82:1173-86.

20. Shamsaei N, Yadollahi A, Bian L, Thompson SM. An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control. Addit Manuf 2015;8:12-35.

21. Derimow N, Clark T, Abbaschian R. Solidification processing and cooling rate effects on hexagonal Co22Cr18Cu20Mn16Ti24 high-entropy alloys. Mater Chem Phys 2020;240:122188.

22. Xu X, Guo S, Nieh T, Liu C, Hirata A, Chen M. Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi high-entropy alloys. Materialia 2019;6:100292.

23. Kube SA, Schroers J. Metastability in high entropy alloys. Scr Mater 2020;186:392-400.

24. Braeckman B, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films 2015;580:71-6.

25. Al Hasan NM, Hou H, Sarkar S, et al. Combinatorial synthesis and high-throughput characterization of microstructure and phase transformation in Ni-Ti-Cu-V quaternary thin-film library. Engineering 2020;6:637-43.

26. Liu X, Zou P, Song L, et al. Combinatorial high-throughput methods for designing hydrogen evolution reaction catalysts. ACS Catal 2022;12:3789-96.

27. Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Comput Mater 2019;5:70.

28. Shi Y, Yang B, Rack PD, Guo S, Liaw PK, Zhao Y. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Mater Design 2020;195:109018.

29. Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in high entropy alloys revealed through combinatorial methods: large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677-86.

30. Keil T, Utt D, Bruder E, Stukowski A, Albe K, Durst K. Solid solution hardening in CrMnFeCoNi-based high entropy alloy systems studied by a combinatorial approach. J Mater Res 2021;36:2558-70.

31. Geuser FD. High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta Mater 2015;101:1-9.

32. Zhang X, Xiang Y. Combinatorial approaches for high-throughput characterization of mechanical properties. J Materiomics 2017;3:209-20.

33. Wang Z, Zhang L, Li W, et al. A high-throughput approach to explore the multi-component alloy space: a case study of nickel-based superalloys. J Alloys Compd 2021;858:158100.

34. Zhu C, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning. J Mater Res Technol 2021;11:2336-53.

35. Liu YH, Fujita T, Aji DP, Matsuura M, Chen MW. Structural origins of Johari-Goldstein relaxation in a metallic glass. Nat Commun 2014;5:3238.

36. Li MX, Zhao SF, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019;569:99-103.

37. Frazier WE. Metal additive manufacturing: a review. J Materi Eng Perform 2014;23:1917-28.

38. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 2018;143:172-96.

39. Snow Z, Nassar AR, Reutzel EW. Invited review article: review of the formation and impact of flaws in powder bed fusion additive manufacturing. Addit Manuf 2020;36:101457.

40. Clare A, Mishra R, Merklein M, et al. Alloy design and adaptation for additive manufacture. J Mater Process Technol 2022;299:117358.

41. Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing - Modeling strategies for application-optimized designs. Addit Manuf 2018;22:758-74.

42. Zhang C, Ouyang D, Pauly S, Liu L. 3D printing of bulk metallic glasses. Mater Sci Eng R Rep 2021;145:100625.

43. Silva LJ, Souza DM, de Araújo DB, Reis RP, Scotti A. Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int J Adv Manuf Technol 2020;107:2513-23.

44. Dhinakaran V, Ajith J, Fathima Yasin Fahmidha A, Jagadeesha T, Sathish T, Stalin B. Wire arc additive manufacturing (WAAM) process of nickel based superalloys - a review. Mater Today 2020;21:920-5.

45. Kozamernik N, Bračun D, Klobčar D. WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int J Adv Manuf Technol 2020;110:1955-68.

46. Hou P, Mooraj S, Champagne VK, et al. Effect of build height on temperature evolution and thermally induced residual stresses in plasma arc additively manufactured stainless steel. Metall Mater Trans A 2022;53:627-39.

47. Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater 2016;116:63-76.

48. Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.

49. Li Z, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM 2017;69:2099-106.

50. Choi W, Jung S, Jo YH, Lee S, Lee B. Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Met Mater Int 2017;23:839-47.

52. Li H, Lai J, Li Z, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater 2021;31:2106715.

53. Marshal A, Pradeep K, Music D, Zaefferer S, De P, Schneider J. Combinatorial synthesis of high entropy alloys: introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution. J Alloys Compd 2017;691:683-9.

54. Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd 2017;696:1139-50.

55. Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10:534-8.

56. Bao N, Zuo J, Du Z, Yang M, Jiang G, Zhang L. Computational characterization of the structural and mechanical properties of AlxCoCrFeNiTi1-x high entropy alloys. Mater Res Express 2019;6:096519.

57. Dong Y, Chen QS, Lu YP, Zhang PC, Li TJ. Effect of aging temperature on microstructure and hardness of CoCrFeNiTi0.5 high entropy alloy. Mater Sci Forum 2014;789:48-53.

58. Guo S, Ng C, Liu C. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd 2013;557:77-81.

59. Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys Compd 2018;760:15-30.

60. Stepanov N, Shaysultanov D, Ozerov M, Zherebtsov S, Salishchev G. Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Mater Lett 2016;185:1-4.

61. Toda-caraballo I, Rivera-díaz-del-castillo PE. Modelling solid solution hardening in high entropy alloys. Acta Mater 2015;85:14-23.

62. He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater 2018;5:42.

63. Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater 2020;32:e2004029.

64. Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater 2018;160:158-72.

65. Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater Sci Eng A 2016;654:30-8.

66. Owen L, Pickering E, Playford H, Stone H, Tucker M, Jones N. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater 2017;122:11-8.

67. Senkov O, Scott J, Senkova S, Miracle D, Woodward C. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 2011;509:6043-8.

68. Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol 2015;31:1223-30.

69. Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 2014;4:57-62.

70. Kottke J, Laurent-brocq M, Fareed A, et al. Tracer diffusion in the Ni-CoCrFeMn system: transition from a dilute solid solution to a high entropy alloy. Scr Mater 2019;159:94-8.

71. Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mate Res Lett 2021;9:239-46.

72. Dąbrowa J, Danielewski M. State-of-the-art diffusion studies in the high entropy alloys. Metals 2020;10:347.

73. Sathiaraj G, Ahmed M, Bhattacharjee P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloys Compd 2016;664:109-19.

74. Bhattacharjee P, Sathiaraj G, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd 2014;587:544-52.

75. Sathiaraj G, Bhattacharjee P. Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy. J Alloys Compd 2015;647:82-96.

76. Ranganathan S. Alloyed pleasures: multimetallic cocktails. Available from: http://eprints.iisc.ac.in/6189/1/Alloyed_pleasures.pdf [Last accessed on 16 Mar 2023].

77. Qiao L, Liu Y, Zhu J. A focused review on machine learning aided high-throughput methods in high entropy alloy. J Alloys Compd 2021;877:160295.

78. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.

79. Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.

80. Krishna YV, Jaiswal UK, Rahul RM. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater 2021;197:113804.

81. Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering 2019;5:1017-26.

82. Liu X, Xu P, Zhao J, Lu W, Li M, Wang G. Material machine learning for alloys: Applications, challenges and perspectives. J Alloys Compd 2022;921:165984.

83. Liu S, Kappes BB, Amin-ahmadi B, Benafan O, Zhang X, Stebner AP. Physics-informed machine learning for composition - process - property design: shape memory alloy demonstration. Appl Mater Today 2021;22:100898.

84. Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning. J Mater Sci Technol 2022;112:277-90.

85. White AD. Deep learning for molecules and materials. LiveCoMS 2022:3.

86. Nassar A, Mullis A. Rapid screening of high-entropy alloys using neural networks and constituent elements. Comput Mater Sci 2021;199:110755.

87. Risal S, Zhu W, Guillen P, Sun L. Improving phase prediction accuracy for high entropy alloys with machine learning. Comput Mater Sci 2021;192:110389.

88. Montavon G, Samek W, Müller K. Methods for interpreting and understanding deep neural networks. Digit Signal Process 2018;73:1-15.

89. Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater 2020;185:528-39.

90. Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Mater 2022;232:117924.

91. Purcell TAR, Scheffler M, Carbogno C, Ghiringhelli LM. SISSO++: A C++ implementation of the sure-independence screening and sparsifying operator approach. J Open Res Softw 2022;7:3960.

92. Sorkin V, Yu ZG, Chen S, Tan TL, Aitken ZH, Zhang YW. A first-principles-based high fidelity, high throughput approach for the design of high entropy alloys. Sci Rep 2022;12:11894.

93. Hautier G, Jain A, Ong SP. From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci 2012;47:7317-40.

94. Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater Charact 2019;147:464-511.

95. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8.

96. Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45:566-9.

97. Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter 1986;33:8822-4.

98. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

99. Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter 1992;46:6671-87.

100. Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater 2019;181:124-38.

101. Rittiruam M, Noppakhun J, Setasuban S, et al. High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys. Sci Rep 2022;12:16653.

102. Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 2000;61:7877-82.

103. Ramer N, Rappe A. Application of a new virtual crystal approach for the study of disordered perovskites. J Phys Chem Solids 2000;61:315-20.

104. Chen L, Hao X, Wang Y, Zhang X, Liu H. First-principles calculation of the effect of Ti content on the structure and properties of TiVNbMo refractory high-entropy alloy. Mater Res Express 2020;7:106516.

105. Lederer Y, Toher C, Vecchio KS, Curtarolo S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater 2018;159:364-83.

106. Curtarolo S, Setyawan W, Hart GL, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 2012;58:218-26.

107. Sanchez J, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems. Physica A 1984;128:334-50.

108. de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539-53.

109. Berding MA, Sher A. Electronic quasichemical formalism: application to arsenic deactivation in silicon. Phys Rev B 1998;58:3853-64.

110. Jiang L, Lu Y, Jiang H, et al. Formation rules of single phase solid solution in high entropy alloys. Mater Sci Technol 2015; doi: 10.1179/1743284715y.0000000130.

111. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 2011;109:103505.

112. Yang S, Liu G, Zhong Y. Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: a case study with Al-Co-Cr-Fe-Ni system. J Alloys Compd 2022;916:165477.

113. Zhou K & Liu B. Molecular dynamics simulation: fundamentals and applications. Academic Press; 2022.

114. Car R, de Angelis F, Giannozzi P, Marzari N. First-principles molecular dynamics. In: Yip S, editor. Handbook of Materials Modeling. Dordrecht: Springer; 2005. pp. 59-76.

115. Tang Y, Li D. Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: a molecular dynamics study. Wear 2021;476:203583.

116. Yin S, Zuo Y, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat Commun 2021;12:4873.

117. Fan Y, Wang W, Hao Z, Zhan C. Work hardening mechanism based on molecular dynamics simulation in cutting Ni-Fe-Cr series of Ni-based alloy. J Alloys Compd 2020;819:153331.

118. Li J, Fang Q, Liu B, Liu Y, Liu Y. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv 2016;6:76409-19.

119. Trong DN, Long VC, Ţălu Ş. Effects of number of atoms and doping concentration on the structure, phase transition, and crystallization process of Fe1-x-yNixCoy alloy: a molecular dynamic study. Appl Sci 2022;12:8473.

120. Xie L, Brault P, Thomann A, Yang X, Zhang Y, Shang G. Molecular dynamics simulation of Al-Co-Cr-Cu-Fe-Ni high entropy alloy thin film growth. Intermetallics 2016;68:78-86.

121. Pan Z, Fu Y, Wei Y, Yan X, Luo H, Li X. Deformation mechanisms of TRIP-TWIP medium-entropy alloys via molecular dynamics simulations. Int J Mech Sci 2022;219:107098.

122. Jarlöv A, Ji W, Zhu Z, et al. Molecular dynamics study on the strengthening mechanisms of Cr-Fe-Co-Ni high-entropy alloys based on the generalized stacking fault energy. J Alloys Compd 2022;905:164137.

123. Li J, Xie B, Fang Q, Liu B, Liu Y, Liaw PK. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy. J Mater Sci Technol 2021;68:70-5.

124. Zhang L, Qian K, Huang J, Liu M, Shibuta Y. Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high-entropy alloy. J Mater Res Technol 2021;13:2043-54.

125. Morrissey LS, Nakhla S. Considerations when calculating the mechanical properties of single crystals and bulk polycrystals from molecular dynamics simulations. Mol Simul 2020;46:1433-42.

126. Zhang L, Qian K, Schuller BW, Shibuta Y. Prediction on mechanical properties of non-equiatomic high-entropy alloy by atomistic simulation and machine learning. Metals 2021;11:922.

127. Jiang J, Sun W, Luo N. Molecular dynamics study of microscopic deformation mechanism and tensile properties in AlxCoCrFeNi amorphous high-entropy alloys. Mater Today Commun 2022;31:103861.

128. Guruvidyathri K, Hari Kumar KC, Yeh JW, Murty BS. Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results. JOM 2017;69:2113-24.

129. Gao MC. Design of high-entropy alloys. In: Gao MC, Yeh J, Liaw PK, Zhang Y, editors. High-entropy alloys. Cham: Springer International Publishing; 2016. pp. 369-98.

130. Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 2015;6:6529.

131. Klaver TPC, Simonovic D, Sluiter MHF. Brute force composition scanning with a CALPHAD database to find low temperature body centered cubic high entropy alloys. Entropy 2018;20:911.

132. Thurston KV, Gludovatz B, Hohenwarter A, Laplanche G, George EP, Ritchie RO. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 2017;88:65-72.

133. Li YJ, Savan A, Ludwig A. Atomic scale understanding of phase stability and decomposition of a nanocrystalline CrMnFeCoNi Cantor alloy. Appl Phys Lett 2021;119:201910.

134. Zeng Z, Xiang M, Zhang D, et al. Mechanical properties of Cantor alloys driven by additional elements: a review. J Mater Res Technol 2021;15:1920-34.

135. Conway PL, Klaver T, Steggo J, Ghassemali E. High entropy alloys towards industrial applications: high-throughput screening and experimental investigation. Mater Sci Eng A 2022;830:142297.

136. Abu-odeh A, Galvan E, Kirk T, et al. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater 2018;152:41-57.

137. Zhao DQ, Pan SP, Zhang Y, Liaw PK, Qiao JW. Structure prediction in high-entropy alloys with machine learning. Appl Phys Lett 2021;118:231904.

138. Schleder GR, Padilha ACM, Acosta CM, Costa M, Fazzio A. From DFT to machine learning: recent approaches to materials science-a review. J Phys Mater 2019;2:032001.

139. Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput Mater 2019:5.

140. Davydov AV, Kattner UR. Predicting synthesizability. J Phys D Appl Phys 2019;52:013001.

141. Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: a molecular dynamics simulations study. Mater Today Commun 2021;28:102525.

142. Wang L, Liu W, Zhu B, et al. Influences of strain rate, Al concentration and grain heterogeneity on mechanical behavior of CoNiFeAlxCu1-x high-entropy alloys: a molecular dynamics simulation. J Mater Res Technol 2021;14:2071-84.

143. Leong Z, Tan TL. Robust cluster expansion of multicomponent systems using structured sparsity. Phys Rev B 2019:100.

144. Leong Z, Ramamurty U, Tan TL. Microstructural and compositional design principles for Mo-V-Nb-Ti-Zr multi-principal element alloys: a high-throughput first-principles study. Acta Mater 2021;213:116958.

145. Fernández-caballero A, Wróbel JS, Mummery PM, Nguyen-manh D. Short-range order in high entropy alloys: theoretical formulation and application to Mo-Nb-Ta-V-W system. J Phase Equilib Diffus 2017;38:391-403.

146. Fontaine D. The number of independent pair-correlation functions in multicomponent systems. J Appl Crystallogr 1971;4:15-9.

147. Kattner UR. The calphad method and its role in material and process development. Tecnol Metal Mater Min 2016;13:3-15.

148. Zeng Y, Man M, Bai K, Zhang Y. Revealing high-fidelity phase selection rules for high entropy alloys: a combined CALPHAD and machine learning study. Mater Design 2021;202:109532.

149. Wu D, Tian Y, Zhang L, et al. Optimal design of high-strength Ti-Al-V-Zr alloys through a combinatorial approach. Materials 2018;11:1603.

150. Gumbmann E, De Geuser F, Deschamps A, Lefebvre W, Robaut F, Sigli C. A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al-Cu-Li alloy. Scr Mater 2016;110:44-7.

151. Li Y, Jensen KE, Liu Y, et al. Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb Sci 2016;18:630-7.

152. Tang M, Pistorius PC, Narra S, Beuth JL. Rapid solidification: selective laser melting of AlSi10Mg. JOM 2016;68:960-6.

153. Aboutaleb AM, Mahtabi MJ, Tschopp MA, Bian L. Multi-objective accelerated process optimization of mechanical properties in laser-based additive manufacturing: case study on Selective Laser Melting (SLM) Ti-6Al-4V. J Manuf Process 2019;38:432-44.

154. Jung HY, Peter NJ, Gärtner E, Dehm G, Uhlenwinkel V, Jägle EA. Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion. Addit Manuf 2020;35:101337.

155. Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility. Acta Mater 2021;206:116632.

156. Ren J, Zhang Y, Zhao D, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022;608:62-8.

157. Zhang S, Hou P, Mooraj S, Chen W. Printability of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass on steel by laser additive manufacturing: a single-track study. Surf Coat Technol 2021;428:127882.

158. Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 2018;17:63-71.

159. Chen W, Voisin T, Zhang Y, et al. Microscale residual stresses in additively manufactured stainless steel. Nat Commun 2019;10:4338.

160. Li Z, Ludwig A, Savan A, Springer H, Raabe D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J Mater Res 2018;33:3156-69.

161. Santa-aho S, Kiviluoma M, Jokiaho T, et al. Additive manufactured 316L stainless-steel samples: microstructure, residual stress and corrosion characteristics after post-processing. Metals 2021;11:182.

162. Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A 2019;764:138209.

163. del Val J, Arias-gonzález F, Barro O, et al. Functionally graded 3D structures produced by laser cladding. Procedia Manuf 2017;13:169-76.

164. Gwalani B, Gangireddy S, Shukla S, et al. Compositionally graded high entropy alloy with a strong front and ductile back. Mater Today Commun 2019;20:100602.

165. Li L, Wang J, Lin P, Liu H. Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition. Ceram Int 2017;43:16638-51.

166. Pegues JW, Melia MA, Puckett R, Whetten SR, Argibay N, Kustas AB. Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys. Addit Manuf 2021;37:101598.

167. Wen Y, Zhang B, Narayan RL, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf 2021;40:101926.

168. Shishkovsky I, Kakovkina N, Scherbakov V. Rapid TMC laser prototyping: Compositional and phase-structural sustainability via combinatorial design of titanium-based gradient alloy reinforced by nano-sized TiC or TiB2 ceramics. SPIE 2018;10523:172-7.

169. Traxel KD, Bandyopadhyay A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing. Addit Manuf 2020;31:101004.

170. Gong X, Yabansu YC, Collins PC, Kalidindi SR. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and gaussian process regression. Materials 2020;13:4641.

171. Li M, Flores KM. Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in multiprincipal element alloys. J Alloys Compd 2020;825:154025.

172. Teh WH, Chaudhary V, Chen S, et al. High throughput multi-property evaluation of additively manufactured Co-Fe-Ni materials libraries. Addit Manuf 2022;58:102983.

173. Gwalani B, Soni V, Waseem OA, Mantri SA, Banerjee R. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x =  0 to 1) high-entropy alloy system. Opt Laser Technol 2019;113:330-7.

174. Zhao Y, Lau KB, Teh WH, et al. Compositionally graded CoCrFeNiTi high-entropy alloys manufactured by laser powder bed fusion: a combinatorial assessment. J Alloys Compd 2021;883:160825.

175. Yu Z, Zheng W, Li Z, et al. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing. J Mater Sci Technol 2021;78:68-73.

176. Wu Y, Wang H, Liu X, et al. Designing bulk metallic glass composites with enhanced formability and plasticity. J Mater Sci Technol 2014;30:566-75.

177. Zhai L, Lu Y, Zhao X, Wang L, Lu X. High-throughput screening of laser additive manufactured metallic glass via ultrasonic wave. Sci Rep 2019;9:17660.

178. Tsai P, Flores KM. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Mater 2016;120:426-34.

179. Tsai P, Flores KM. A combinatorial strategy for metallic glass design via laser deposition. Intermetallics 2014;55:162-6.

180. Islam Z, Nelaturu P, Thoma DJ. A dimensionless number for high-throughput design of multi-principal element alloys in directed energy deposition. Appl Phys Lett 2021;119:231901.

181. Zhang W, Liu L, Peng S, et al. The tensile property and notch sensitivity of AlCoCrFeNi2.1 high entropy alloy with a novel “steel-frame” eutectic microstructure. J Alloys Compd 2021;863:158747.

182. Joseph J, Imran M, Hodgson P, Barnett M, Fabijanic D. Towards the large-scale production and strength prediction of near-eutectic AlxCoCrFeNi2.1 alloys by additive manufacturing. Manuf Lett 2020;25:16-20.

183. Moorehead M, Nelaturu P, Elbakhshwan M, et al. High-throughput ion irradiation of additively manufactured compositionally complex alloys. J Nucl Mater 2021;547:152782.

184. Miracle D, Majumdar B, Wertz K, Gorsse S. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scr Mater 2017;127:195-200.

185. Miracle DB, Li M, Zhang Z, Mishra R, Flores KM. Emerging capabilities for the high-throughput characterization of structural materials. Annu Rev Mater Res 2021;51:131-64.

186. Pathak S, Kalidindi SR. Spherical nanoindentation stress-strain curves. Mater Sci Eng R Rep 2015;91:1-36.

187. Jiang L, Cao Z, Jie J, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J Alloys Compd 2015;649:585-90.

188. Ma S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A 2012;532:480-6.

189. Wang X, Liu Q, Huang Y, Xie L, Xu Q, Zhao T. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding. Materials 2020;13:2209.

190. Shun T, Chang L, Shiu M. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater Sci Eng A 2012;556:170-4.

191. Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater 2019;165:228-40.

192. Huang K, Kain C, Diaz-vallejo N, Sohn Y, Zhou L. High throughput mechanical testing platform and application in metal additive manufacturing and process optimization. J Manuf Process 2021;66:494-505.

193. Chen R, Qin G, Zheng H, et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater 2018;144:129-37.

194. Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater Design 2020;187:108358.

195. Ren F, Pandolfi R, Van Campen D, Hexemer A, Mehta A. On-the-fly data assessment for high-throughput X-ray diffraction measurements. ACS Comb Sci 2017;19:377-85.

196. Long CJ, Bunker D, Li X, Karen VL, Takeuchi I. Rapid identification of structural phases in combinatorial thin-film libraries using X-ray diffraction and non-negative matrix factorization. Rev Sci Instrum 2009;80:103902.

197. Datye A, Alexander Kube S, Verma D, Schroers J, Schwarz UD. Accelerated discovery and mechanical property characterization of bioresorbable amorphous alloys in the Mg-Zn-Ca and the Fe-Mg-Zn systems using high-throughput methods. J Mater Chem B 2019;7:5392-400.

198. Zhao L, Jiang L, Yang L, et al. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci Technol 2022;110:269-82.

199. Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Wang H, Vecchio KS. Phase mapping in EBSD using convolutional neural networks. Microsc Microanal 2020;26:458-68.

200. Tang Y, Sun S, Lv M, et al. Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of FeCoNi(CuAl)0.8Hox (x = 0-0.07) high-entropy alloys. Intermetallics 2021;135:107216.

201. Zhang Q, Xu H, Tan X, et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) (x = 0-1.2) high-entropy alloys. J Alloys Compd 2017;693:1061-7.

202. Borkar T, Chaudhary V, Gwalani B, et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi. Adv Eng Mater 2017;19:1700048.

203. Li P, Wang A, Liu C. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys. Intermetallics 2017;87:21-6.

204. Taylor CD, Lu P, Saal J, Frankel GS, Scully JR. Integrated computational materials engineering of corrosion resistant alloys. NPJ Mater Degrad 2018:2.

205. Taylor SR. The investigation of corrosion phenomena with high throughput methods: a review. Corros Rev 2011;29:135-51.

206. Muster T, Trinchi A, Markley T, et al. A review of high throughput and combinatorial electrochemistry. Electrochim Acta 2011;56:9679-99.

207. Whitfield MJ, Bono D, Wei L, Van Vliet KJ. High-throughput corrosion quantification in varied microenvironments. Corros Sci 2014;88:481-6.

208. White P, Smith G, Harvey T, et al. A new high-throughput method for corrosion testing. Corros Sci 2012;58:327-31.

209. Liu J, Liu N, Sun M, Li J, Sohn S, Schroers J. Fast screening of corrosion trends in metallic glasses. ACS Comb Sci 2019;21:666-74.

210. Xiang C, Fu H, Zhang Z, et al. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J Alloys Compd 2020;818:153352.

211. Renčiuková V, Macák J, Sajdl P, Novotný R, Krausová A. Corrosion of zirconium alloys demonstrated by using impedance spectroscopy. J Nucl Mater 2018;510:312-21.

212. Qiu X. Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results Phys 2019;12:1737-41.

213. Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J Alloys Compd 2013;553:216-20.

214. Hua N, Wang W, Wang Q, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J Alloys Compd 2021;861:157997.

215. Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM 2008;60:46-9.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/