REFERENCES

1. Jelvani S, Shoja Razavi R, Barekat M, Dehnavi M. Empirical-statistical modeling and prediction of geometric characteristics for laser-aided direct metal deposition of inconel 718 superalloy. Met Mater Int 2020;26:668-81.

2. Dinda G, Dasgupta A, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 2009;509:98-104.

3. Zhong C, Pirch N, Gasser A, Poprawe R, Schleifenbaum J. The influence of the powder stream on high-deposition-rate laser metal deposition with inconel 718. Metals 2017;7:443.

4. Sreekanth S, Ghassemali E, Hurtig K, Joshi S, Andersson J. Effect of direct energy deposition process parameters on single-track deposits of alloy 718. Metals 2020;10:96.

5. Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. Cham, Switzerland: Springer, 2021.

6. Eagar TW, Tsai NS. Temperature fields produced by traveling distributed heat sources. Weld J 1983;62:346-55.

7. Feenstra D, Molotnikov A, Birbilis N. Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications. Mater Design 2021;198:109342.

8. Juhasz M. Machine learning predictions of single clad geometry in directed energy deposition. Available from: https://osf.io/vxdmz/ [Last accessed on 24 Mar 2023].

9. Akbari P, Ogoke F, Kao N, et al. MeltpoolNet: melt pool characteristic prediction in Metal Additive Manufacturing using machine learning. Addit Manuf 2022;55:102817.

10. Ye J, Bab-hadiashar A, Hoseinnezhad R, et al. Predictions of in-situ melt pool geometric signatures via machine learning techniques for laser metal deposition. Int J Comput Integr Manuf 2022;Online ahead of print:1-17.

11. Mondal S, Gwynn D, Ray A, Basak A. Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals 2020;10:683.

12. Menon N, Mondal S, Basak A. Multi-fidelity surrogate-based process mapping with uncertainty quantification in laser directed energy deposition. Materials 2022;15:2902.

13. Lawrence JR, Waugh D. Laser surface engineering: processes and applications. Elsevier; 2014.

14. Basak A, Das S. Additive manufacturing of nickel-base superalloy IN100 through scanning laser epitaxy. JOM 2018;70:53-9.

15. Angel NM, Basak A. On the fabrication of metallic single crystal turbine blades with a commentary on repair via additive manufacturing. JMMP 2020;4:101.

16. Graybill B, Li M, Malawey D, Ma C, Alvarado-Orozco JM, Martinez-Franco E. Additive manufacturing of nickel-based superalloys. Am Soc Mech Eng 2018;51357:V001T01A015.

17. Wang Z, Zhang L, Li W, et al. A high-throughput approach to explore the multi-component alloy space: a case study of nickel-based superalloys. J Alloys Compd 2021;858:158100.

18. Qin Z, Wang Z, Wang Y, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett 2021;9:32-40.

19. Xiong W. Additive manufacturing as a tool for high-throughput experimentation. J Mater Inf 2022;2:12.

20. Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Comput Mater 2019;5:21.

21. Zhang Y, Xu X. Lattice misfit predictions via the gaussian process regression for Ni-based single crystal superalloys. Met Mater Int 2021;27:235-53.

22. Yu J, Xi S, Pan S, et al. Machine learning-guided design and development of metallic structural materials. J Mater Inf 2021;1:9.

23. Mukherjee T, Manvatkar V, De A, Debroy T. Dimensionless numbers in additive manufacturing. J Appl Phys 2017;121:064904.

24. Wang W, Yin J, Chai Z, et al. Big data-assisted digital twins for the smart design and manufacturing of advanced materials: from atoms to products. J Mater Inf 2022;2:1.

25. Sente Software - JMatPro®. Available from: https://www.sentesoftware.co.uk/jmatpro [Last accessed on 24 Mar 2023].

26. Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 2006;22:361-74.

27. Cannon Muskegon. Available from: https://cannonmuskegon.com/ [Last accessed on 24 Mar 2023].

28. Rosenthal D. The theory of moving sources of heat and its application to metal treatments. Trans ASME 1946;68:849-65.

29. Lee YS, Nordin M, Babu SS, Farson D. Influence of fluid convection on weld pool formation in laser cladding. Available from: https://www.researchgate.net/profile/Yousub-Lee-2/publication/268278864_Influence_of_Fluid_Convection_on_Weld_Pool_Formation_in_Laser_Cladding/links/549af80b0cf2b80371371766/Influence-of-Fluid-Convection-on-Weld-Pool-Formation-in-Laser-Cladding.pdf [Last accessed on 31 Mar 2023].

30. Rasmussen CE. Gaussian processes in machine learning. In: Bousquet O, von Luxburg U, Rätsch G, editors. Advanced Lectures on Machine Learning. Berlin: Springer Berlin Heidelberg; 2004. pp. 63-71.

31. Fletcher R. Practical methods of optimization. John Wiley & Sons; 2013.

32. Duvenaud D. Automatic model construction with Gaussian processes. University of Cambridge; 2014.

33. Le Q, Sarlós T, Smola A. Fastfood-approximating kernel expansions in loglinear time. Available from: http://proceedings.mlr.press/v28/le13-supp.pdf [Last accessed on 24 Mar 2023].

34. GPy by SheffieldML. Available from: https://sheffieldml.github.io/GPy/ [Last accessed on 24 Mar 2023].

35. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/ [Last accessed on 31 Mar 2023].

36. Breusch TS, Pagan AR. A simple test for heteroscedasticity and random coefficient variation. Econometrica 1979;47:1287.

37. Wang C, Neal RM. Gaussian process regression with heteroscedastic or non-Gaussian residuals. arXiv preprint arXiv:1212.6246 :2012.

38. Sobol′ I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 2001;55:271-80.

39. Herman J, Usher W. SALib: an open-source python library for sensitivity analysis. J Open Source Softw 2017;2:97.

40. Saltelli A, Ratto M, Andres T, et al. Global sensitivity analysis: the primer. John Wiley & Sons; 2008.

41. Zieliñska M, Yavorska M, Porêba M, Sieniawski J. . Thermal properties of cast nickel based superalloys. Available from: https://www.researchgate.net/profile/Jan-Sieniawski/publication/50302351_Thermal_properties_of_cast_nickel_based_superalloys/links/543fade30cf21227a11a8218/Thermal-properties-of-cast-nickel-based-superalloys.pdf [Last accessed on 31 Mar 2023]

42. Chen X, Xie J, Fox P. Direct laser remelting of iron with addition of boron. Mater Sci Technol 2004;20:715-9.

43. Ahmed SH, Mian A. Influence of material property variation on computationally calculated melt pool temperature during laser melting process. Metals 2019;9:456.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/