REFERENCES

1. The Swedish Steel Producers’ Association. Environmental evaluation of steel and steel structures. Available from: https://www.jernkontoret.se/globalassets/publicerat/handbocker/stalkretsloppet_slutrapport_miljohandbok_engelsk_web.pdf [Last accessed on 16 Mar 2023].

2. Jégourel Y. The global iron ore market: from cyclical developments to potential structural changes. Extr Ind Soc 2020;7:1128-34.

3. Zhang X, Ma G, Liu M, Li Z. Removal of residual element tin in the ferrous metallurgy process: a review. Metals 2019;9:834.

4. Nachtrab WT, Chou YT. Grain boundary segregation of copper, tin and antimony in C-Mn steels at 900 °C. J Mater Sci 1984;19:2136-44.

5. Kim SW, Lee HG. Effect of oxide scale formation on the behaviour of Cu in steel during high temperature oxidation in O2-N2 and H2O-N2 atmospheres. Steel Res Int 2009;80:121-9.

6. Yin L, Sridhar S. Effects of residual elements arsenic, antimony, and tin on surface hot shortness. Metall and Materi Trans B 2011;42:1031-43.

7. Shubhank K, Kang Y. Critical evaluation and thermodynamic optimization of Fe-Cu, Cu-C, Fe-C binary systems and Fe-Cu-C ternary system. Calphad 2014;45:127-37.

8. Melford DA. The influence of residual and trace elements on hot shortness and high temperature embrittlement. Phil Trans R Soc Lond A 1980;295:89-103.

9. Yu Y, Li L, Wang J. Sn recovery from a tin-bearing middling with a high iron content and the transformation behaviours of the associated As, Pb, and Zn. Sci Total Environ 2020;744:140863.

10. Su Z, Zhang Y, Liu B, Lu M, Li G, Jiang T. Extraction and separation of tin from tin-bearing secondary resources: a review. JOM 2017;69:2364-72.

11. Bunnakkha C, Jarupisitthorn C. Extraction of tin from hardhead by oxidation and fusion with sodium hydroxide. J Met Mater Miner 2012;22:1-6.

12. Lee S, Lee M, Kim HY. Recovery of high purity Sn by multi-step reduction of Sn-containing industrial wastes. J Korean Inst Resour Recyc 2015;24:11-5.

13. Spencer P. A brief history of CALPHAD. Calphad 2008;32:1-8.

14. Sundman B, Lukas HL, Fries SG. Computational thermodynamics: the Calphad method. 1st ed. Cambridge University Press; 2007. pp. 1-296.

15. Bale C, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016. Calphad 2016;54:35-53.

16. Andersson J, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002;26:273-312.

17. Cao W, Chen S, Zhang F, et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 2009;33:328-42.

18. Nüssler H, von Goldbeck O, Spencer P. A thermodynamic assessment of the iron-tin system. Calphad 1979;3:19-26.

19. Kumar K, Wollants P, Delaey L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad 1996;20:139-49.

20. Miettinen J. Thermodynamic description of the Cu-Fe-Sn system at the Cu-Fe side. Calphad 2008;32:500-5.

21. Huang YC, Gierlotka W, Chen SW. Sn-Bi-Fe Thermodynamic modeling and Sn-Bi/Fe interfacial reactions. Intermetallics 2010;18:984-91.

22. Lafaye P, Toffolon-masclet C, Crivello J, Joubert J. Thermodynamic modelling of the Fe-Sn-Zr system based on new experiments and first-principles calculations. J Alloys Compd 2020;821:153200.

23. Hillert M. The compound energy formalism. J Alloys Compd 2001;320:161-76.

24. Kang YB, Pelton AD. The shape of liquid miscibility gaps and short-range-order. J Chem Thermodyn 2013;60:19-24.

25. Pelton AD, Degterov SA, Eriksson G, Robelin C, Dessureault Y. The modified quasichemical model I - binary solutions. Metall Mater Trans B 2000;31:651-9.

26. Pelton AD, Chartrand P. The modified quasi-chemical model: Part II. Multicomponent solutions. Metall Mater Trans A 2001;32:1355-60.

27. Okamoto H. Phase diagrams of binary iron alloys. Metals park, Ohio: American Society for Metals; 1993:385-92.

28. Ehret WF, Westgren AF. X-ray analysis of iron-tin alloys. J Am Chem Soc 1933;55:1339-51.

29. Campbell AN, Wood JH, Skinner GB. The system iron-tin: liquidus only. J Am Chem Soc 1949;71:1729-33.

30. Mills KC, Turkdogan ET. Liquid miscibility gap in iron-tin system. Trans Metall Soc AIME 1964;230:1202-3.

31. Hillert M, Wada T, Wada H. The alpha-gamma equilibrium in Fe-Mn, Fe-Mo, Fe-Ni, Fe-Sb, Fe-Sn and Fe-W systems. J Iron Steel Inst 1967;205:539-46.

32. Kozuka Z, Shidahara Y, Sugimoto E, et al. Thermodynamic study of hardhead (tin-iron alloy). Nippon Kogyo Kaishi 1968;84:1657-62.

33. Shiraishi SY, Bell HB. Miscibility gap in liquid iron-tin alloys. Trans Inst Min Metall Sect C 1968;77:104-5.

34. Speight EA. The gamma loop in the iron–Tin system. Met Sci J 1972;6:57-60.

35. Predel B, Frebel M. Precipitation behavior of α-solid solutions of the Fe-Sn system. Metall Trans 1973;4:243-9.

36. Nageswararao M, Mcmahon CJ, Herman H. The solubility and solution behavior of antimony and tin in α-lron and the effects of nickel and chromium additions. Metall Trans B 1974;5:1061-8.

37. Treheux D, Guiraldenq P. Etude des diagrammes d’equilibre binaires par la methode des couples de diffusion application au systeme fer-etain. Scr Metall 1974;8:363-6.

38. Connolly J, Mcallan J. The tin-iron eutecticL'eutectique etain-ferDas Zinn-eisen-eutektikum. Acta Metallurgica 1975;23:1209-14.

39. Malaman B, Roques B, Courtois A, Protas J. Structure cristalline du stannure de fer Fe3Sn2. Acta Crystallogr B Struct Sci 1976;32:1348-51.

40. Eremenko VN, Churakov MM, Pechentkovskaya LE. Conditions of stannide formation during the interaction of Fe with a Sn-Pb melt and their thermodynamic properties. Russ Metall 1976;4:58-62.

41. Yamamoto T, Takashima T, Nishida K. Interdiffusion in the α-solid solutions of the Fe-Sn system. J Jpn Inst Met 1981;45:985-90.

42. Yamamoto M, Mori S, Kato E. Mass spectrometric study of the thermodynamic properties of liquid Fe-Sn, Fe-Sn-Cu alloys. Tetsu-to-Hagane 1981;67:1952-61.

43. Arita M, Ohyama M, Goto KS, Someno M. Measurements of activity, solubility, and diffusivity in α and γ Fe-Sn alloys between 1183 and 1680 K. Int J Mater Res 1981;72:244-50.

44. Nunoue S, Kato E. Mass spectrometric determination of the miscibility gap in the liquid Fe-Sn system and the activities of this system at 1550 °C and 1600 °C. Tetsu-to-Hagane 1987;73:868-75.

45. Imai N, Tanaka T, Yuki T, Iida T, Morita Z. Equilibrium distribution of Sn between solid and liquid phases in Fe-Sn and Fe-C-Sn alloys. Tetsu-to-Hagane 1991;77:224-30.

46. Gao J, Li C, Guo C, Du Z. Investigation of the stable and the metastable liquidus miscibility gaps in Fe-Sn and Fe-Cu binary systems. Int J Miner Metall Mater 2019;26:1427-35.

47. Bernhard M, Fuchs N, Presoly P, Angerer P, Friessnegger B, Bernhard C. Characterization of the γ-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniques. Mater Charact 2021;174:111030.

48. Bernhard M, Presoly P, Fuchs N, Bernhard C, Kang Y. Experimental study of high temperature phase equilibria in the iron-rich part of the Fe-P and Fe-C-P systems. Metall Mater Trans A 2020;51:5351-64.

49. Bernhard M, Presoly P, Bernhard C et al. An assessment of analytical liquidus equations for Fe-C-Si-Mn-Al-P-alloyed steels using DSC/DTA techniques. Metall Mater Trans B 2021;52:2821-30.

50. Kim DI, Abbaschian R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J Phase Equilibria Diffus 2000;21:25-31.

51. Min S, Park J, Lee J. Surface tension of the 60% Bi-24% Cu-16%Sn alloy and the critical temperature of the immiscible liquid phase separation. Maters Lett 2008;62:4464-6.

52. Lee D, Cho Y, Kim JH, Hwang I, Chung Y, Kang Y. Application of k-means clustering to material research: measurement of layer thickness and contact angle. Met Mater Int ;2023:1-12.

53. Lee S. Comparison of initial seeds methods for K-means clustering. J Internet Comput Serv 2012;13:1-8.

54. Morissette L, Chartier S. The k-means clustering technique: general considerations and implementation in Mathematica. Tutor Quant Methods Psychol 2013;9:15-24.

55. Boettinger WJ, Kattner UR, Moon K, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. In: Zhao ZC, editor. Methods for phase diagram determination. Amsterdam: Elsevier Science; 2006. pp. 151-205.

56. Barin I. Thermochemical data of pure substances. Part I and Part II. NewYork: Verlag Chemie; 1989, pp. 1392.

57. Humenik M, Kingery WD. Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. J Am Ceramic Soc 1954;37:18-23.

58. Chidambaram PR, Edwards GR, Olson DL. A thermodynamic criterion to predict wettability at metal- alumina interfaces. Metall Mater Trans B 1992;23:215-22.

59. Kapilashrami E, Jakobsson A, Seetharaman S, Lahiri AK. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique. Metall and Materi Trans B 2003;34:193-9.

60. Nikolopoulos P. Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems. J Mater Sci 1985;20:3993-4000.

61. Pelton AD, Kang Y. Modeling short-range ordering in solutions. Int J Mater Res 2007;98:907-17.

62. Tafwidli F, Kang Y. Thermodynamic modeling of Fe-C-S ternary system. ISIJ Int 2017;57:782-90.

63. Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags. Metall Mater Trans B 1986;17:805-15.

64. Hillert M, Jarl M. A model for alloying in ferromagnetic metals. Calphad 1978;2:227-38.

65. Dinsdale A. SGTE data for pure elements. Calphad 1991;15:317-425.

66. Gustafson P. A thermodynamic evaluation of Fe-C system. Scand J Metall 1985;14:259-67.

67. Batalin GI, Sudavtsova VS, Kurach VP. Thermodynamic properties of liquid Fe-Sn alloys. Izv Akad Nauk SSSR 1984;4:50-1.

68. Petrushevskiy MS, Esin YuO, Bayev VM, et al. Influence of short-range ordering on the concentration dependence of the enthalpies of formation of liquid of iron-tin alloys. Russ Metall 1978;1:61-3.

69. Lück R, Predel B. The enthalpy of mixing of liquid iron-tin alloys determined by means of a new high-temperature calorimeter. Z Metallkd 1985;76:684-6.

70. Wagner S, St. pierre GR. Thermodynamics of the liquid binary iron-tin by mass spectrometry. Metall Trans B 1972;3:2873-8.

71. Maruyama N, Ban-Ya S. Measurement of activities in liquid Fe-Cu, Fe-Cr and Fe-Sn alloys by a transportation method. J Japan Inst Met Mater 1980;44:1422-31.

72. Eremenko VN, Lukashenko GM, Pritula VL. Thermodyanmic properties of Fe-Sn melts. Russ Metall 1972;1:72-5.

73. Fedorenko AN, Brovkin VG. Vapor pressure of tin and thermodynamic properties of the tin and iron system. Sb Nauchn Tr-Gos Proektn Nauchno-Issled Inst 1977;3:83-9.

74. Shiraishi SY, and Bell HB. Thermodynamic study of tin smelting. PT. 1. Iron-tin and iron-tin-oxygen alloys. Inst Mining Met Trans Sect C 1970;79:C120-7.

75. Yazawa A, Koike K. Tin smelting. II. Activity measurements in molten tin-iron alloy. Nippon Kogyo Kaishi 1969;85:39-42.

76. Wang J, Hudon P, Kevorkov D, Chartrand P, Jung I, Medraj M. Thermodynamic and experimental study of the Mg-Sn-Ag-in quaternary system. J Phase Equilib Diffus 2014;35:284-313.

77. Jannin C, Michel A, Lecocq P. Magnetism and properties of different phases in the Fe-Sn system. Comptes Redus Hebomadaires Seances Acad Sci 1963;257:1906-7.

78. Zabyr L, Fitzner K. Gibbs free energy of formation of iron antimonide (FeSb2), iron-tin (FeSn), and iron-tin (FeSn2) intermetallic phases. Arch Hutn 1984;29:227-33.

79. Wu P, Song J, Yu X, et al. Evidence of spin reorientation and anharmonicity in kagome ferromagnet Fe3Sn2. Appl Phys Lett 2021;119:082401.

80. Sales BC, Yan J, Meier WR, Christianson AD, Okamoto S, Mcguire MA. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys Rev Mater 2019;3:1-8.

81. Kubaschewski O. Iron binary phase diagrams. 1st ed. Berlin Heidelberg: Springer Science & Business Media; 1982, pp.139-42.

82. Hultgren R, Desai PD, Hawkins DT, et al. Selected values of the thermodynamic properties of binary alloys. Metals Park, Ohio: American Society for Metals; 1973, pp. 884-7.

83. Hansen M, Anderko K. Constitution of binary alloys. New York: McGraw-Hill; 1958, pp.718-20.

84. Singh M, Bhan S. Contribution to the Fe - Sn system. J Mater Sci Lett 1986;5:733-5.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/