REFERENCES

1. Sims C. , Stoloff N., Hagel W. Superalloys II: High-temperature materials for aerospace and industrial power; 1987. Available from: https://www.researchgate.net/profile/James-Smialek/publication/283993132_High_Temperature_Oxidation_in_Superalloy/links/5829db5e08ae138f1bf2f305/High-Temperature-Oxidation-in-Superalloy.pdf [Last accessed on 14 Sep 2022].

2. Ruan J, Xu W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods. Acta Materialia 2020;186:425-33.

3. Zhao S, Xie X, Smith GD, Patel SJ. Research and Improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740. Mater Des 2006;27:1120-7.

4. Sahay S, Goswami B. Recent developments in co-base alloys. SSP 2009;150:197-219.

5. Zhu J, Titus MS, Pollock TM. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system. J Phase Equilib Diffus 2014;35:595-611.

6. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science 2006;312:90-1.

7. Miura S, Ohkubo K, Mohri T. Mechanical properties of Co-based L12 intermetallic compound Co3(Al,W). Mater Trans 2007;48:2403-8.

8. Kobayashi S, Tsukamoto Y, Takasugi T, et al. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique. Intermetallics 2009;17:1085-9.

9. Yu Y, Wang C, Liu X, Ohnuma I, Kainuma R, Ishida K. Experimental determination of phase equilibria in the Co-Ti-Mo ternary system. Intermetallics 2008;16:1199-205.

10. Yao Q, Shang S, Hu Y, et al. First-principles investigation of phase stability, elastic and thermodynamic properties in L12Co3(Al,Mo,Nb) phase. Intermetallics 2016;78:1-7.

11. Qiang Y, Shang S, Kang W, et al. Phase stability, elastic, and thermodynamic properties of the L12(Co,Ni)3(Al,Mo,Nb) phase from first-principles calculations. J Mater Res 2017;32:1-9.

12. Kobayashi S, Tsukamoto Y, Takasugi T. Phase equilibria in the Co-rich Co-Al-W-Ti quaternary system. Intermetallics 2011;19:1908-12.

13. Kobayashi S, Tsukamoto Y, Takasugi T. The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ′-Co3(Al,W) phase. Intermetallics 2012;31:94-8.

14. Makineni S, Samanta A, Rojhirunsakool T, et al. A new class of high strength high temperature Cobalt based γ-γ′ Co-Mo-Al alloys stabilized with Ta addition. Acta Materialia 2015;97:29-40.

15. Makineni S, Nithin B, Chattopadhyay K. A new tungsten-free γ-γ’ Co-Al-Mo-Nb-based superalloy. Scripta Materialia 2015;98:36-9.

16. Makineni S, Nithin B, Chattopadhyay K. Synthesis of a new tungsten-free γ-γ′ cobalt-based superalloy by tuning alloying additions. Acta Materialia 2015;85:85-94.

17. Makineni SK, Nithin B, Palanisamy D, Chattopadhyay K. Phase evolution and crystallography of precipitates during decomposition of new “tungsten-free” Co(Ni)-Mo-Al-Nb γ-γ′ superalloys at elevated temperatures. J Mater Sci 2016;51:7843-60.

18. Chinen H, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Phase Equilibria and Ternary Intermetallic Compound with L12 Structure in Co-W-Ga System. J Phase Equilib Diffus 2009;30:587-94.

19. Chinen H, Sato J, Omori T, et al. New ternary compound Co3(Ge,W) with L12 structure. Scripta Materialia 2007;56:141-3.

20. Zenk CH, Povstugar I, Li R, et al. A novel type of Co-Ti-Cr-base γ/γ′ superalloys with low mass density. Acta Materialia 2017;135:244-51.

21. Im HJ, Makineni SK, Gault B, Stein F, Raabe D, Choi P. Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scripta Materialia 2018;154:159-62.

22. Chen M, Wang C. First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al,W). Scri Mater 2009;60:659-62.

23. Chen M, Wang C. First-principle investigation of 3d transition metal elements in γ′-Co3(Al,W). J Appl Phys 2010;107:093705.

24. Mao Z, Booth-morrison C, Sudbrack CK, Noebe RD, Seidman DN. Interfacial free energies, nucleation, and precipitate morphologies in Ni-Al-Cr alloys: calculations and atom-probe tomographic experiments. Acta Materialia 2019;166:702-14.

25. Xu W, Shang S, Wang C, et al. Accelerating exploitation of Co-Al-based superalloys from theoretical study. Mater Des 2018;142:139-48.

26. Yu J, Wang C, Chen Y, Wang C, Liu X. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data. Mater Des 2020;195:108996.

27. Nosengo N. Can artificial intelligence create the next wonder material? Nature 2016;533:22-5.

28. Raccuglia P, Elbert KC, Adler PD, et al. Machine-learning-assisted materials discovery using failed experiments. Nature 2016;533:73-6.

29. Pilania G. Machine learning in materials science: From explainable predictions to autonomous design. Comp Mater Sci 2021;193:110360.

30. Yu J, Xi S, Pan S, et al. Machine learning-guided design and development of metallic structural materials. J Mater Inf 2021;1:9.

31. Liu P, Huang H, Antonov S, et al. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization. npj Comput Mater 2020:6.

32. Swetlana S, Khatavkar N, Singh AK. Development of Vickers hardness prediction models via microstructural analysis and machine learning. J Mater Sci 2020;55:15845-56.

33. Ruan J, Liu X, Yang S, et al. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ′ phase. Intermetallics 2018;92:126-32.

34. Zou M, Li W, Li L, Zhao J, Feng Q. Machine learning assisted design approach for developing γ′-strengthened Co-Ni-base superalloys. 2020.

35. Li W, Li L, Antonov S, Wei C, Zhao J, Feng Q. High-throughput exploration of alloying effects on the microstructural stability and properties of multi-component CoNi-base superalloys. J Alloys Compd 2021;881:160618.

36. Tamura R, Osada T, Minagawa K, et al. Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy. Mater Des 2021;198:109290.

37. Guo J, Xiao B, Li Y, et al. Machine learning aided first-principles studies of structure stability of Co3(Al, X) doped with transition metal elements. Comp Mater Sci 2021;200:110787.

38. Zunger A, Wei S, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:353-6.

39. Jiang C. First-principles study of Co3(Al,W) alloys using special quasi-random structures. Scr Mater 2008;59:1075-8.

40. Asta M, Ozolins V, Woodward C. A first-principles approach to modeling alloy phase equilibria. JOM 2001;53:16-9.

41. de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539-53.

42. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.

43. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter 1994;49:14251-69.

44. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 1996;6:15-50.

45. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.

46. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

47. Dang H, Wang C, Shu X. Electronic structure of edge dislocation of core-doped Ti in Fe. Prog Nat Sci 2004;14:477-82.

48. Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys 2014;86:253-305.

49. Xi S, Chen L, Bao L, et al. Effects of alloying elements on the atomic structure, elastic and thermodynamic properties of L12-Co3(V, Ti) compound. Mater Today Comm 2022;30:102931.

50. Xu W, Wang Y, Wang C, Liu X, Liu Z. Alloying effects of Ta on the mechanical properties of γ’ Co3(Al, W): A first-principles study. Scr Mater 2015;100:5-8.

51. Saal JE, Wolverton C. Thermodynamic stability of Co-Al-W L12 γ′. Acta Materialia 2013;61:2330-8.

52. Wang S, Ye H. Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys Condens Matter 2003;15:5307.

53. Shang S, Wang Y, Liu Z. First-principles elastic constants of α- and θ-Al2O3. Appl Phys Lett 2007;90:101909.

54. Chung D. Elastic moduli of single crystal and polycrystalline MgO. Philos Mag 1963;8:833-41.

55. Anderson OL. A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Sol 1963;24:909-17.

56. Chung DH, Buessem WR. The Voigt-Reuss-Hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO2 (Rutile), and α-Al2O3. J Appl Phys 1968;39:2777-82.

57. Liu X, Wang Y, Xu W, Han J, Wang C. Effects of transition elements on the site preference, elastic properties and phase stability of L12 γ′-Co3(Al, W) from first-principles calculations. J Alloys Compd 2020;820:153179.

58. Ho Y, Pepyne D. Simple explanation of the No-Free-Lunch theorem and its implications. J Optimiz The Appl 2002;115:549-70.

59. Goldstein D. Analyzing microarray gene expression data. J Am Stat Assoc 2005;100:1464-5.

60. Yu J, Guo S, Chen Y, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning. Intermetallics 2019;110:106466.

61. Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans patt analys mach intell 1997;19:711-720.

62. Wang C, Zhang C, Wang Y, et al. Effects of transition elements on the structural, elastic properties and relative phase stability of L12 γ′-Co3Nb from first-principles calculations. Metals 2021;11:933.

63. Sanyal S, Waghmare UV, Hanlon T, Hall EL. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: a first-principles study. Mater Sci Engineer: A 2011;530:373-7.

64. Geng P, Li W, Zhang X, et al. A theoretical model for yield strength anomaly of Ni-base superalloys at elevated temperature. J Alloys Compd 2017;706:340-3.

65. Wang CP, Deng B, Xu WW, et al. Effects of alloying elements on relative phase stability and elastic properties of L12Co3V from first-principles calculations. J Mater Sci 2018;53:1204-16.

66. Bauer A, Neumeier S, Pyczak F, Göken M. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr Mater 2010;63:1197-200.

67. Ruan J, Wang C, Yang S, et al. Experimental investigations of microstructures and phase equilibria in the Co-V-Ta ternary system. J Alloys Compd 2016;664:141-8.

68. Chen Y, Wang C, Ruan J, et al. High-strength Co-Al-V-base superalloys strengthened by γ′-Co3(Al,V) with high solvus temperature. Acta Materialia 2019;170:62-74.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/