REFERENCES

1. Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem 2018:2.

2. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science 2018;361:360-5.

3. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.

4. Hong Y, Hou B, Jiang H, Zhang J. Machine learning and artificial neural network accelerated computational discoveries in materials science. WIREs Comput Mol Sci 2020:10.

5. Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIREs Comput Mol Sci 2021; doi: 10.1002/wcms.1558.

6. Tabor DP, Roch LM, Saikin SK, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 2018;3:5-20.

7. Lilienfeld OA, Müller K, Tkatchenko A. Exploring chemical compound space with quantum-based machine learning. Nat Rev Chem 2020;4:347-58.

8. Nie Z, Liu Y, Yang L, Li S, Pan F. Construction and application of materials knowledge graph based on author disambiguation: revisiting the evolution of LiFePO4. Adv Energy Mater 2021;11:2003580.

9. Noh J, Gu GH, Kim S, Jung Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem Sci 2020;11:4871-81.

10. Coley CW. Defining and exploring chemical spaces. Trends in Chemistry 2021;3:133-45.

11. Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 2016;120:14575-80.

12. Furmanchuk A, Agrawal A, Choudhary A. Predictive analytics for crystalline materials: bulk modulus. RSC Adv 2016;6:95246-51.

13. Kauwe SK, Graser J, Vazquez A, Sparks TD. Machine learning prediction of heat capacity for solid inorganics. Integr Mater Manuf Innov 2018;7:43-51.

14. Li W, Jacobs R, Morgan D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Computational Materials Science 2018;150:454-63.

15. Zheng X, Zheng P, Zhang RZ. Machine learning material properties from the periodic table using convolutional neural networks. Chem Sci 2018;9:8426-32.

16. Raccuglia P, Elbert KC, Adler PD, et al. Machine-learning-assisted materials discovery using failed experiments. Nature 2016;533:73-6.

17. Weston L, Tshitoyan V, Dagdelen J, et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature. J Chem Inf Model 2019;59:3692-702.

18. Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 2019;571:95-8.

19. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018;4:268-76.

20. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018;4:eaap7885.

21. Long T, Fortunato NM, Opahle I, et al. Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures. npj Comput Mater 2021:7.

22. Kingma DP, Welling M. Auto-encoding variational bayes. Available from: https://arxiv.org/abs/1312.6114 [Last accessed on 13 Sep 2021].

23. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Available from: https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf [Last accessed on 13 Sep 2021].

24. Davies DW, Butler KT, Skelton JM, Xie C, Oganov AR, Walsh A. Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem Sci 2018;9:1022-30.

25. Zakutayev A, Zhang X, Nagaraja A, et al. Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. J Am Chem Soc 2013;135:10048-54.

26. Acosta CM, Fazzio A, Dalpian GM, Zunger A. Inverse design of compounds that have simultaneously ferroelectric and Rashba cofunctionality. Phys Rev B 2020:102.

27. Noh J, Kim S, Gu GH, et al. Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments. Chem Commun (Camb) 2019;55:13418-21.

28. Lazauskas T, Sokol AA, Woodley SM. An efficient genetic algorithm for structure prediction at the nanoscale. Nanoscale 2017;9:3850-64.

29. Alberi K, Nardelli MB, Zakutayev A, et al. The 2019 materials by design roadmap. J Phys D Appl Phys 2018;52:013001.

30. Bergerhoff G, Hundt R, Sievers R, Brown ID. The inorganic crystal structure data base. J Chem Inf Comput Sci 1983;23:66-9.

31. Kirklin S, Saal JE, Meredig B, et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput Mater 2015:1.

32. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials 2013;1:011002.

33. Meredig B, Agrawal A, Kirklin S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 2014:89.

34. Regmi K, Borji A. Cross-view image synthesis using geometry-guided conditional GANs. Computer Vision and Image Understanding 2019;187:102788.

35. Cao J, Hu Y, Yu B, He R, Sun Z. 3D aided duet GANs for multi-view face image synthesis. IEEE Trans Inform Forensic Secur 2019;14:2028-42.

36. Santurkar S, Tsipras D, Tran B, et al. .

37. Lao Q, Havaei M, Pesaranghader A, Dutil F, Di Jorio L, Fevens T. .

38. Cha M, Gwon YL, Kung HT. Adversarial learning of semantic relevance in text to image synthesis. AAAI 2019;33:3272-9.

39. Li W, Zhang P, Zhang L, et al. .

40. Wang TC, Liu MY, Tao A, Liu G, Kautz J, Catanzaro B. .

41. Kumar K, Kumar R, de Boissiere T, et al. .

42. Donahue C, McAuley J, Puckette M. .

43. Bińkowski M, Donahue J, Dieleman S, et al. .

44. Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H. Application of generative autoencoder in de novo molecular design. Mol Inform 2018;37:1700123.

45. Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 2018;4:120-31.

46. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 2017;14:3098-104.

47. Kadurin A, Aliper A, Kazennov A, et al. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017;8:10883-90.

48. Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 1989;29:97-101.

49. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 1988;28:31-6.

50. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 2016;30:595-608.

51. Pathak Y, Juneja KS, Varma G, Ehara M, Priyakumar UD. Deep learning enabled inorganic material generator. Phys Chem Chem Phys 2020;22:26935-43.

52. Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y. Generative adversarial networks for crystal structure prediction. ACS Cent Sci 2020;6:1412-20.

53. Hoffmann J, Maestrati L, Sawada Y, Tang J, Sellier JM, Bengio Y. Data-driven approach to encoding and decoding 3-D crystal structures. Available from: https://arxiv.org/abs/1909.00949 [Last accessed on 13 Sep 2021].

54. Noh J, Kim J, Stein HS, et al. Inverse design of solid-state materials via a continuous representation. Matter 2019;1:1370-84.

55. Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G. Generative recurrent networks for de novo drug design. Mol Inform 2018;37:1700111.

56. Guimaraes GL, Sánchez-Lengeling B, Farias PLC, Aspuru-Guzik AJA. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. Available from: https://arxiv.org/abs/1705.10843 [Last accessed on 13 Sep 2021].

57. Sanchez B, Outeiral C, Guimaraes G, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv. Cambridge: Cambridge Open Engage; 2017.

58. Lim J, Ryu S, Kim JW, Kim WY. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Cheminform 2018;10:31.

59. Prykhodko O, Johansson SV, Kotsias PC, et al. A de novo molecular generation method using latent vector based generative adversarial network. J Cheminform 2019;11:74.

60. Li Y, Zhang L, Liu Z. Multi-objective de novo drug design with conditional graph generative model. J Cheminform 2018;10:33.

61. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P. Learning deep generative models of graphs. Available from: https://arxiv.org/abs/1803.03324 [Last accessed on 13 Sep 2021].

62. Simonovsky M, Komodakis N. GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. Artificial Neural Networks and Machine Learning - ICANN 2018. Cham: Springer International Publishing; 2018. p. 412-22.

63. Weng M, Wang Z, Qian G, et al. Identify crystal structures by a new paradigm based on graph theory for building materials big data. Sci China Chem 2019;62:982-6.

64. Zhao Q, Zhang L, He B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality. Energy Storage Materials 2021;40:386-93.

65. Keith JA, Vassilev-Galindo V, Cheng B, et al. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem Rev 2021;121:9816-72.

66. Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. Journal of Materiomics 2017;3:159-77.

67. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater 2020;10:1903242.

68. Lu Z. Computational discovery of energy materials in the era of big data and machine learning: a critical review. Materials Reports: Energy 2021;1:100047.

69. Zhao Q, Avdeev M, Chen L, Shi S. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors. Science Bulletin 2021;66:1401-8.

70. Gu GH, Choi C, Lee Y, et al. Progress in computational and machine-learning methods for heterogeneous small-molecule activation. Adv Mater 2020;32:e1907865.

71. Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat Commun 2018;9:3405.

72. Nouira A, Sokolovska N, Crivello JC. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. Available from: https://arxiv.org/abs/1810.11203 [Last accessed on 13 Sep 2021].

73. Ren Z, Noh J, Tian S, et al. Inverse design of crystals using generalized invertible crystallographic representation. Available from: https://arxiv.org/abs/2005.07609 [Last accessed on 13 Sep 2021].

74. Court CJ, Yildirim B, Jain A, Cole JM. 3-D inorganic crystal structure generation and property prediction via representation learning. J Chem Inf Model 2020;60:4518-35.

75. Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks. Sci Adv 2020;6:eaax9324.

76. Davies DW, Butler KT, Jackson AJ, et al. Computational screening of all stoichiometric inorganic materials. Chem 2016;1:617-27.

77. Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput Mater 2020:6.

78. Nguyen P, Tran T, Gupta S, Rana S, Venkatesh S. Hybrid Generative-Discriminative Models for inverse materials design. Available from: https://arxiv.org/abs/1811.06060 [Last accessed on 13 Sep 2021].

79. Yao Z, Sánchez-lengeling B, Bobbitt NS, et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat Mach Intell 2021;3:76-86.

80. Dong Y, Li D, Zhang C, et al. Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN. Carbon 2020;169:9-16.

81. Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv 2020;53:1-34.

82. Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data 2016:3.

83. Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning. ACS Cent Sci 2019;5:1717-30.

84. Sohn K, Lee H, Yan X. Learning structured output representation using deep conditional generative models. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, editors. NIPS: Curran Associates, Inc; 2015.

85. Mirza M, Osindero S. Conditional generative adversarial nets. Available from: https://arxiv.org/abs/1411.1784 [Last accessed on 13 Sep 2021].

86. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. A field guide to dynamical recurrent neural networks. IEEE Press;2001. p. 237-43.

87. Kodali N, Abernethy J, Hays J, Kira Z. On convergence and stability of GANs. Available from: https://arxiv.org/abs/1705.07215 [Last accessed on 13 Sep 2021].

88. Browne M, Ghidary SS. .

89. Arjovsky M, Chintala S, Bottou L. .

90. Denton E, Chintala S, Szlam A, Fergus R. Deep generative image models using a laplacian pyramid of adversarial networks. Available from: https://arxiv.org/abs/1506.05751 [Last accessed on 13 Sep 2021].

91. Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. Available from: https://arxiv.org/abs/1703.10717 [Last accessed on 13 Sep 2021].

92. Brock A, Donahue J, Simonyan K. .

93. Jolliffe I. Principal Component Analysis. In: Lovric M, editor. International encyclopedia of statistical science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011, p. 1094-6.

94. Borg I. Multidimensional Scaling. In: Lovric M, editor. International encyclopedia of statistical science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011, p. 875-8.

95. Maaten LVD, Hinton GE. Visualizing data using t-SNE. Journal of Machine Learning Research 2008;9:2579-605.

96. Ceriotti M, Tribello GA, Parrinello M. From the Cover: Simplifying the representation of complex free-energy landscapes using sketch-map. Proc Natl Acad Sci U S A 2011;108:13023-8.

97. Jang J, Gu GH, Noh J, Kim J, Jung Y. Structure-based synthesizability prediction of crystals using partially supervised learning. J Am Chem Soc 2020;142:18836-43.

98. Jung J, Yoon JI, Park S, et al. Modelling feasibility constraints for materials design: Application to inverse crystallographic texture problem. Computational Materials Science 2019;156:361-7.

99. Johnson L, Arróyave R. An inverse design framework for prescribing precipitation heat treatments from a target microstructure. Materials & Design 2016;107:7-17.

100. Wang S, Jia Z, Lu X, Zhang H, Zhang C, Liang SY. Simultaneous optimization of fixture and cutting parameters of thin-walled workpieces based on particle swarm optimization algorithm. SIMULATION 2017;94:67-76.

101. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Cheminform 2017;9:48.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/