REFERENCES

1. Gleiter H. Nanocrystalline materials. Prog Mater Sci 1989;33:223-315.

2. Wu Z, Troparevsky M, Gao Y, Morris J, Stocks G, Bei H. Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr Opin Solid State Mater Sci 2017;21:267-84.

3. Peng HR, Gong MM, Chen YZ, Liu F. Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int Mater Rev 2016;62:303-33.

4. Andrievski RA. Review of thermal stability of nanomaterials. J Mater Sci 2014;49:1449-60.

5. Duan W. Computational materials science. Curr Opin Solid State Mater Sci 2006;10:1-1.

6. Seaman L. Development of computational models for microstructural features. AIP Conf Proc 1982;78:118-129.

7. Moriwake H, Kuwabara A, Fisher CA, et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO(2). Adv Mater 2013;25:618-22.

8. Derlet P, Dudarev S. Million-atom molecular dynamics simulations of magnetic iron. Prog Mater Sci 2007;52:299-318.

9. Xiao P, Henkelman G. Kinetic monte carlo study of Li intercalation in LiFePO4. ACS Nano 2018;12:844-51.

10. Gránásy L, Tóth GI, Warren JA, et al. Phase-field modeling of crystal nucleation in undercooled liquids - a review. Prog Mater Sci 2019;106:100569.

11. Abe T, Chen Y, Saengdeejimg A, Kobayashi Y. Computational phase diagrams for the Nd-based magnets based on the combined ab initio/CALPHAD approach. Scripta Materialia 2018;154:305-10.

12. Liu Z. Computational thermodynamics and its applications. Acta Materialia 2020;200:745-92.

13. Wang J, Yang T, Zorn JA, et al. Strain anisotropy and magnetic domain structures in multiferroic heterostructures: High-throughput finite-element and phase-field studies. Acta Materialia 2019;176:73-83.

14. Wang P, Sun S, Zhang Q, Zhang TY. A brief introduction of mechanoinformations. Chin J Nat 2018;40:313-22. (in Chinese)

15. Ramakrishna S, Zhang T, Lu W, et al. Materials informatics. J Intell Manuf 2019;30:2307-26.

16. Xiong J, Shi S, Zhang T. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Materials & Design 2020;187:108378.

17. Xiong J, Shi S, Zhang T. Machine learning prediction of glass-forming ability in bulk metallic glasses. Comp Mater Sci 2021;192:110362.

18. Xiong J, Zhang T, Shi S. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Communications 2019;9:576-85.

19. Wei Q, Xiong J, Sun S, Zhang T. Multi-objective machine learning of four mechanical properties of steels. Sci Sin-Tech 2021;51:722-36.

20. Zhang T, He Y, Wang J, Sun S. Machine learning prediction of the hardness of tool and mold steels. Sci Sin-Tech 2019;49:1148-58.

21. Wang WY, Zhang Y, Liaw PK. Editorial: data-driven integrated computational materials engineering for high-entropy materials. Front Mater 2021;8:664829.

22. Zou C, Li J, Wang WY, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Materialia 2021;202:211-21.

23. Li R, Xie L, Wang WY, Liaw PK, Zhang Y. High-throughput calculations for high-entropy alloys: a brief review. Front Mater 2020;7:290.

24. Yi Wang W, Li J, Liu W, Liu Z. Integrated computational materials engineering for advanced materials: a brief review. Comp Mater Sci 2019;158:42-8.

25. Wang H, Xiang X, Zhang L. On the data-driven materials innovation infrastructure. Engineering 2020;6:609-11.

26. de Pablo JJ, Jackson NE, Webb MA, et al. New frontiers for the materials genome initiative. npj Comput Mater 2019;5.

27. de Pablo JJ, Jones B, Kovacs CL, Ozolins V, Ramirez AP. The materials genome Initiative, the interplay of experiment, theory and computation. Curr Opin Solid State Mater Sci 2014;18:99-117.

28. Himanen L, Geurts A, Foster AS, Rinke P. Data-driven materials science: status, challenges, and perspectives. Adv Sci 2019;6:1900808.

29. Wang H, Xiang Y, Xiang XD, Chen LQ. Materials genome enables research and development revolution. Sci Tech Rev 2015;33:13-9. (in Chinese)

30. Shi SQ, Xu JW, Cui YH, et al. Multiscale materials computational methods. Sci Tech Rev 2015;33:20-30. (in Chinese)

31. Wang H, Xiang XD, Zhang LT. Data + AI: the core of materials genomic engineering. Sci Tech Rev 2018;36:15-21. (in Chinese)

32. Su YJ, Fu HD, Bai Y, Jiang X, Xie JX. Progress in materials genome engineering in China. Acta Metall Sin 2020;56:1313-23. (in Chinese)

33. Wang WY, Li P, Lin D, et al. DID code: a bridge connecting the materials genome engineering database with inheritable integrated intelligent manufacturing. Engineering 2020;6:612-20.

34. Wang WY, Tang B, Lin D, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: insight into atomic and electronic building blocks. J Mater Res 2020;35:872-89.

35. Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater 2020;10:1903242.

36. Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. npj Comput Mater 2020;6:101.

37. Möller JJ, Körner W, Krugel G, Urban DF, Elsässer C. Compositional optimization of hard-magnetic phases with machine-learning models. Acta Materialia 2018;153:53-61.

38. Jinnouchi R, Asahi R. predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J Phys Chem Lett 2017;8:4279-83.

39. Ling J, Chen W, Sheng Y, Li W, Zhang L, Du Y. A MGI-oriented investigation of the Young’s modulus and its application to the development of a novel Ti-Nb-Zr-Cr bio-alloy. Mater Sci Eng C Mater Biol Appl 2020;106:110265.

40. Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. Journal of Materiomics 2017;3:159-77.

41. Wei J, Chu X, Sun X, et al. Machine learning in materials science. InfoMat 2019;1:338-58.

42. Liu S, Su Y, Yin H, et al. An infrastructure with user-centered presentation data model for integrated management of materials data and services. npj Comput Mater 2021;7:88.

43. Yılmaz B, Yıldırım R. Critical review of machine learning applications in perovskite solar research. Nano Energy 2021;80:105546.

44. Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput Mater 2019;5.

45. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23:821-42.

46. Song X, Zhang Z, Lu N, et al. Crystal structures and magnetic performance of nanocrystalline Sm-Co compounds. Front Mater Sci 2012;6:207-15.

47. Zhang Z, Song X, Qiao Y, et al. A nanocrystalline Sm-Co compound for high-temperature permanent magnets. Nanoscale 2013;5:2279-84.

48. Xu W, Song X, Lu N, Huang C. Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta Materialia 2010;58:396-407.

49. Zhang Z, Song X, Xu W. Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy. Acta Materialia 2011;59:1808-17.

50. Luo J, Liang JK, Rao GH. Formation, crystal structure and magnetic properties of rare-earth transition-metal intermetallic compounds (I). J Chin Rare Earth Soc 2012;30:385-402. (in Chinese)

51. Luo J, Liang JK, Rao FH. Formation, crystal structure and magnetic properties of rare-earth transition-metal intermetallic compounds (II). J Chin Rare Earth Soc 2012;30:513-24. (in Chinese)

52. Shen B, Yu C, Baker AA, et al. Chemical synthesis of magnetically hard and strong rare earth metal based nanomagnets. Angew Chem Int Ed Engl 2019;58:602-6.

53. Li X, Lou L, Song W, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater 2017;29:1606430.

54. Liu S. Sm-Co high-temperature permanent magnet materials. Chinese Phys B 2019;28:017501.

55. Mccallum R, Lewis L, Skomski R, Kramer M, Anderson I. Practical aspects of modern and future permanent magnets. Annu Rev Mater Res 2014;44:451-77.

56. Okamoto H. Co-Sm (Cobalt-Samarium). J Phase Equilib Diffus 2011;32:165-6.

57. Liu XM, Liu GQ, Li DP, Wang HB, Song XY. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Phys Sin 2014;63:098102. (in Chinese)

58. Li D, Song X, Zhang Z, Lu N, Qiao Y, Liu X. Preparation and properties of single-phase Sm5Co2 nanocrystalline alloy. Acta Metallurgica Sinica 2012;48:1248.

59. Song X, Lu N, Seyring M, et al. Abnormal crystal structure stability of nanocrystalline Sm2Co17 permanent magnet. Appl Phys Lett 2009;94:023102.

60. Lu N, Song X, Zhang J. Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound. Nanotechnology 2010;21:115708.

61. Zhang Z, Song X, Xu W, Seyring M, Rettenmayr M. Crystal structure and magnetic performance of single-phase nanocrystalline SmCo7 alloy. Scripta Materialia 2010;62:594-7.

62. Zhang Z, Song X, Xu W, Li D, Liu X. Crystal structure and magnetic performance of nanocrystalline SmCo9.8 alloy. J Appl Phys 2011;110:124318.

63. Yue M, Zhang X, Liu JP. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches. Nanoscale 2017;9:3674-97.

64. Xu WW, Song XY, Zhang ZX. multiphase equilibrium, phase stability and phase transformation in nanocrystalline alloy systems. NANO 2012;07:1250012.

65. Mchale JM. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 1997;277:788-91.

66. Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Materials Characterization 2019;147:464-511.

67. Xu WW, Song XY, Li ED, Wei J, Li LM. Phase configuration and stability in the nanocrystalline Sm-Co system. Acta Phys Sin 2009;58:3280-6. (in Chinese)

68. Zhang H, Banfield JF. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 1998;8:2073-6.

69. Song X, Zhang J, Li L, Yang K, Liu G. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals. Acta Materialia 2006;54:5541-50.

70. Guinea F, Rose JH, Smith JR, Ferrante J. Scaling relations in the equation of state, thermal expansion, and melting of metals. Appl Phys Lett 1984;44:53-5.

71. Xu W, Song X, Zhang Z. Thermodynamic study on metastable phase: from polycrystalline to nanocrystalline system. Appl Phys Lett 2010;97:181911.

72. Xu WW, Song XY, Li ED, Wei J, Zhang JX. Thermodynamic study on phase stability in nanocrystalline Sm-Co alloy system. J Appl Phys 2009;105:104310.

73. Xu W, Song X, Zhang Z, Liang H. Experimental and modeling studies on phase stability of nanocrystalline magnetic Sm2Co7. Materials Science and Engineering: B 2013;178:971-6.

74. Xu W, Song X, Lu N, Seyring M, Rettenmayr M. Nanoscale thermodynamic study on phase transformation in the nanocrystalline Sm2Co17 alloy. Nanoscale 2009;1:238-44.

75. Meng Q, Zhou N, Rong Y, Chen S, Hsu T, Zuyao X. Size effect on the Fe nanocrystalline phase transformation. Acta Materialia 2002;50:4563-70.

76. Hu B, Zhang HQ, Zhang J, Yang MJ, Du Y, Zhao DD. Progress in interfacial thermodynamics and grain boundary complexion diagram. Acta Metall Sinica 2021;57:1199-214.

77. Song X, Zhang J, Yue M, et al. Technique for preparing ultrafine nanocrystalline bulk material of pure rare-earth metals. Adv Mater 2006;18:1210-5.

78. Fecht HJ. Intrinsic instability and entropy stabilization of grain boundaries. Phys Rev Lett 1990;65:610-3.

79. Wagner M. Structure and thermodynamic properties of nanocrystalline metals. Phys Rev B Condens Matter 1992;45:635-9.

80. Yang CC, Li S. Size-dependent phase stability of silver nanocrystals. J Phys Chem C 2008;112:16400-4.

81. Johnson CA. Generalization of the Gibbs-Thomson equation. Surface Science 1965;3:429-44.

82. Guo K, Lu H, Mao F, et al. How non-ferromagnetic Mn enhances the magnetization of SmCo7 based alloys. Nanoscale 2020;12:5567-77.

83. Yao Z, Jiang C. Structure and magnetic properties of SmCoxTi0.4-1:7 ribbons. J Magn Magn Mater 2008;320:1073-7.

84. Zhou J, Skomski R, Chen C, Hadjipanayis GC, Sellmyer DJ. Sm-Co-Cu-Ti high-temperature permanent magnets. Appl Phys Lett 2000;77:1514-6.

85. Luo J, Liang JK, Guo YQ, et al. Crystal structure and magnetic properties of SmCo5.85Si0.90 compound. Appl Phys Lett 2004;84:3094-6.

86. Guo Y, Li W, Feng W, et al. Structural stability and magnetic properties of SmCo7-xGax. Appl Phys Lett 2005;86:192513.

87. Luo J, Liang J, Guo Y, et al. Effects of the doping element on crystal structure and magnetic properties of Sm(Co,M)7 compounds (M=Si, Cu, Ti, Zr, and Hf). Intermetallics 2005;13:710-6.

88. Al-omari I, Zhou J, Sellmyer D. Magnetic and structural properties of SmCo6.75-xFexZr0.25 compounds. J Alloys Compd 2000;298:295-8.

89. Huang MQ, Wallace WE, McHenry M, Chen Q, Ma BM. Structure and magnetic properties of SmCo7-xZrx alloys (x = 0-0.8). J Appl Phys 1998;83:6718-20.

90. Zhou J, Al-omari IA, Liu JP, Sellmyer DJ. Structure and magnetic properties of SmCo7-xTix with TbCu7-type structure. J Appl Phys 2000;87:5299-301.

91. Luo J, Liang JK, Guo YQ, et al. Crystal structure and magnetic properties of SmCo7-xHfx compounds. Appl Phys Lett 2004;85:5299-301.

92. Guo Y, Feng W, Li W, Luo J, Liang J. Magnetism and phase stability of R(Co,M)7 pseudobinary intermetallics with TbCu7-type structure. J Appl Phys 2007;101:023919.

93. Li Y, Shen J, Chen Y. Atomistic simulation for disordered TbCu7-type compounds SmCo7 and Sm(Co,T)7 (T=Ti, Ga, Si, Cu, Hf, Zr). Solid State Sciences 2010;12:33-8.

94. Sobolev A, Golovnia O, Popov A. Embedded atom potential for Sm-Co compounds obtained by force-matching. J Magn Magn Mater 2019;490:165468.

95. Song XY, Xu WW, Zhang ZX. Nanoscale stabilization of metastable phase: thermodynamic model and experimental studies. Acta Phys Sin 2012;61:200510. (in Chinese)

96. Seyring M, Song X, Zhang Z, Rettenmayr M. Concurrent ordering and phase transformation in SmCo7 nanograins. Nanoscale 2015;7:12126-32.

97. Hua G, Song X, Tang F, et al. Modeling and experimental studies of Hf-doped nanocrystalline SmCo7 alloys. Cryst Eng Comm 2016;18:8080-8.

98. Mao F, Lu H, Liu D, Guo K, Tang F, Song X. Structural stability and magnetic properties of SmCo5 compounds doped with transition metal elements. J Alloys Compd 2019;810:151888.

99. Hua G, Song X, Liu D, Wang D, Wang H, Liu X. Effects of Hf on phase structure and magnetic performance of nanocrystalline SmCo7-type alloy. J Mater Sci 2016;51:3390-7.

100. Das B, Choudhary R, Skomski R, et al. Anisotropy and orbital moment in Sm-Co permanent magnets. Phys Rev B 2019;100:024419.

101. Söderlind P, Landa A, Locht ILM, et al. Prediction of the new efficient permanent magnet SmCoNiFe3. Phys Rev B 2017;96:100404.

102. Gavrikov IS, Karpenkov DY, Zheleznyi MV, Kamynin AV, Khotulev ES, Bazlov AI. Effect of Ni doping on stabilization of Sm(Co1-xFex)5 compound: thermodynamic calculation and experiment. J Phys Condens Matter 2020;32:425803.

103. Chen Nx, Ren Gb. Carlsson-Gelatt-Ehrenreich technique and the Möbius inversion theorem. Phys Rev B Condens Matter 1992;45:8177-80.

104. Chen Nx. Modified Möbius inverse formula and its applications in physics. Phys Rev Lett 1990;64:1193-5.

105. Shen J, Qian P, Chen N. Atomistic investigation on site preference and lattice vibrations of Sm(Co,M)12 (M = Cr, Ti, V, Nb, Fe). J Alloys Compd 2005;388:208-14.

106. Shen J, Qian P, Chen N. Atomistic simulation on phase stability and site preference of R2 (Co, Mn)17 (R = Nd, Sm, Gd). Modelling Simul Mater Sci Eng 2005;13:239-47.

107. Wang AY, Murdock RJ, Kauwe SK, et al. Machine learning for materials scientists: an introductory guide toward best practices. Chem Mater 2020;32:4954-65.

108. Ong SP. Accelerating materials science with high-throughput computations and machine learning. Comp Mater Sci 2019;161:143-50.

109. Liu D, Guo K, Tang F, et al. Selecting doping elements by data mining for advanced magnets. Chem Mater 2019;31:10117-25.

110. Liu X, Song X, Guo K, Liu D, Mao F. Development of database and information management system for data-driven materials design. Sci Sin-Tech 2020;50:786-800.

111. Vassiliadis P. A survey of extract-transform-load technology. Int J Data Warehous Min 2009;5:1-27.

112. Ong SP, Cholia S, Jain A, et al. The materials application programming interface (API): a simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comp Mater Sci 2015;97:209-15.

113. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data 2016;3:160018.

114. Dai D, Xu T, Wei X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comp Mater Sci 2020;175:109618.

115. Jain A, Ong SP, Hautier G, et al. Commentary: The Materials Project: a Materials genome approach to accelerating materials innovation. APL Materials 2013;1:011002.

116. Kim E, Huang K, Saunders A, Mccallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem Mater 2017;29:9436-44.

117. Wu Y, Lazic P, Hautier G, Persson K, Ceder G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ Sci 2013;6:157-68.

118. Schmidt J, Shi J, Borlido P, Chen L, Botti S, Marques MAL. Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem Mater 2017;29:5090-103.

119. Tao Q, Xu P, Li M, Lu W. Machine learning for perovskite materials design and discovery. npj Comput Mater 2021;7:1-18.

120. Durodola J. Machine learning for design, phase transformation and mechanical properties of alloys. Prog Mater Sci 2021; doi: 10.1016/j.pmatsci.2021.100797.

121. Lu Z, Chen X, Liu X, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses. npj Comput Mater 2020;6:1-9.

122. Ihalage A, Hao Y. Analogical discovery of disordered perovskite oxides by crystal structure information hidden in unsupervised material fingerprints. npj Comput Mater 2021;7:1-12.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/