REFERENCES

1. Raoux S, Wełnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev 2010;110:240-67.

2. Zhang W, Mazzarello R, Wuttig M, Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater 2019;4:150-68.

3. Zhang W, Thiess A, Zalden P, et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat Mater 2012;11:952-6.

4. Siegrist T, Jost P, Volker H, et al. Disorder-induced localization in crystalline phase-change materials. Nat Mater 2011;10:202-8.

5. Gan Y, Huang Y, Miao N, Zhou J, Sun Z. Novel IV-V-VI semiconductors with ultralow lattice thermal conductivity. J Mater Chem C 2021;9:4189-99.

6. Fahrnbauer F, Souchay D, Wagner G, Oeckler O. High thermoelectric figure of merit values of germanium antimony tellurides with kinetically stable cobalt germanide precipitates. J Am Chem Soc 2015;137:12633-8.

7. Rosenthal T, Schneider MN, Stiewe C, Döblinger M, Oeckler O. Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Chem Mater 2011;23:4349-56.

8. Hu P, Wei TR, Qiu P, et al. Largely enhanced Seebeck coefficient and thermoelectric performance by the distortion of electronic density of states in Ge2Sb2Te5. ACS Appl Mater Interfaces 2019;11:34046-52.

9. Wei T, Hu P, Chen H, et al. Quasi-two-dimensional GeSbTe compounds as promising thermoelectric materials with anisotropic transport properties. Appl Phys Lett 2019;114:053903.

10. Ibarra-hernández W, Raty J. Ab initio density functional theory study of the electronic, dynamic, and thermoelectric properties of the crystalline pseudobinary chalcogenide (GeTe)x/(Sb2Te3)(x=1,2,3). Phys Rev B 2018;97:245205.

11. Rosenthal T, Urban P, Nimmrich K, et al. Enhancing the thermoelectric properties of germanium antimony tellurides by substitution with selenium in compounds GenSb2(Te1-xSex)n+3(0 ≤ x ≤ 0.5; n ≥ 7). Chem Mater 2014;26:2567-78.

12. Welzmiller S, Fahrnbauer F, Hennersdorf F, et al. Increasing Seebeck coefficients and thermoelectric performance of Sn/Sb/Te and Ge/Sb/Te materials by Cd doping. Adv Electron Mater 2015;1:1500266.

13. Da Silva JLF, Walsh A, Lee H. Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compounds. Phys Rev B 2008;78.

14. Sun Z, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett 2006;96:055507.

15. Eom J, Yoon Y, Park C, et al. Global and local structures of the Ge-Sb-Te ternary alloy system for a phase-change memory device. Phys Rev B 2006;73.

16. Sa B, Miao N, Zhou J, Sun Z, Ahuja R. Ab initio study of the structure and chemical bonding of stable Ge(3)Sb(2)Te(6). Phys Chem Chem Phys 2010;12:1585-8.

17. Sa B, Zhou J, Song Z, Sun Z, Ahuja R. Pressure-induced topological insulating behavior in the ternary chalcogenide Ge2Sb2Te5. Phys Rev B 2011;84.

18. Kim J, Kim J, Jhi S. Prediction of topological insulating behavior in crystalline Ge-Sb-Te. Phys Rev B 2010;82.

19. Sa B, Zhou J, Ahuja R, Sun Z. First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Comput Mater Sci 2014;82:66-9.

20. Sa B, Sun Z, Kaewmaraya T, Zhou J, Ahuja R. Structural and vibrational properties of layered data storage material: Ge2Sb2Te5. sci adv mater 2013;5:1493-7.

21. Campi D, Paulatto L, Fugallo G, Mauri F, Bernasconi M. First-principles calculation of lattice thermal conductivity in crystalline phase change materials: GeTe, Sb2Te3, and Ge2Sb2Te5. Phys Rev B 2017;95.

22. Shelimova LE, Karpinskii OG, Zemskov VS, Konstantinov PP. Structural and electrical properties of layered tetradymite-like compounds in the GeTe-Bi2Te3 and GeTe-Sb2Te3 systems. Inorg Mater 2000;36:235-42.

23. Matsunaga T, Kojima R, Yamada N, et al. Structural investigation of GeSb6Te10 and GeBi6Te10 intermetallic compounds in the chalcogenide homologous series. Acta Crystallogr B 2010;66:407-11.

24. Kosuga A, Nakai K, Matsuzawa M, et al. Enhanced thermoelectric performance of In-substituted GeSb6Te10 with homologous structure. APL Materials 2014;2:086102.

25. Kosuga A, Nakai K, Matsuzawa M, et al. Crystal structure, microstructure, and thermoelectric properties of GeSb6Te10 prepared by spark plasma sintering. J Alloys Compd 2015;618:463-8.

26. Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J Comput Chem 2008;29:2044-78.

27. Wang G, Peng L, Li K, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design. Comput Mater Sci 2021;186:110064.

28. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

29. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

30. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 2006;27:1787-99.

31. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyán JG. Screened hybrid density functionals applied to solids. J Chem Phys 2006;124:154709.

32. Bylander DM, Kleinman L. Energy fluctuations induced by the Nosé thermostat. Phys Rev B Condens Matter 1992;46:13756-61.

33. Deringer VL, Tchougréeff AL, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 2011;115:5461-6.

34. Madsen GK, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 2006;175:67-71.

35. Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput Phys Commun 2014;185:1747-58.

36. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001;73:515-62.

37. Grimsditch M, Polian A, Brazhkin V, Balitskii D. Elastic constants of α-GeO2. J Appl Phys 1998;83:3018-20.

38. Cordero ZC, Schuh CA. Phase strength effects on chemical mixing in extensively deformed alloys. Acta Materialia 2015;82:123-36.

39. Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A 1991;43:3161-4.

40. Cordero B, Gómez V, Platero-Prats AE, et al. Covalent radii revisited. Dalton Trans 2008:2832-8.

41. Mishra SK, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys: Condens Matter 1997;9:461-70.

42. Gorai P, Stevanović V, Toberer ES. Computationally guided discovery of thermoelectric materials. Nat Rev Mater 2017;2.

43. Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008;321:554-7.

44. Sun Z, Pan Y, Zhou J, Sa B, Ahuja R. Origin of p-type conductivity in layered nGeTe·mSb2Te3 chalcogenide semiconductors. Phys Rev B 2011;83:113201.

45. Li Z, Miao N, Zhou J, Sun Z, Liu Z, Xu H. High thermoelectric performance of few-quintuple Sb2Te3 nanofilms. Nano Energy 2018;43:285-90.

46. Einhorn M, Williamson BAD, Scanlon DO. Computational prediction of the thermoelectric performance of LaZnOPn (Pn = P, As). J Mater Chem A 2020;8:7914-24.

47. Gandi AN, Schwingenschlögl U. WS2 as an excellent high-temperature thermoelectric material. Chem Mater 2014;26:6628-37.

48. Jonson M, Mahan GD. Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys Rev B 1980;21:4223-9.

49. Kim SI, Lee KH, Mun HA, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015;348:109-14.

50. Li Z, Han S, Pan Y, et al. Origin of high thermoelectric performance with a wide range of compositions for BixSb2-xTe3 single quintuple layers. Phys Chem Chem Phys 2019;21:1315-23.

51. Anderson OL. A simplified method for calculating the debye temperature from elastic constants. J Phys Condens Matter 1963;24:909-17.

52. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008;320:634-8.

53. Wang M, Lin S. Anisotropic and ultralow phonon thermal transport in organic-inorganic hybrid perovskites: atomistic insights into solar cell thermal management and thermoelectric energy conversion efficiency. Adv Funct Mater 2016;26:5297-306.

54. Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys Rev Lett 2008;101:035901.

55. Roufosse M, Klemens PG. Thermal conductivity of complex dielectric crystals. Phys Rev B 1973;7:5379-86.

56. Li W, Mingo N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys Rev B 2015;91:144304.

57. Wu D, Zhao LD, Hao S, et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 2014;136:11412-9.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/