REFERENCES

1. Cattant F, Crusset D, Féron D. Corrosion issues in nuclear industry today. Mater Today 2008;11:32-7.

2. Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater 2003;51:5775-99.

3. Wood RJ. Erosion-corrosion interactions and their effect on marine and offshore materials. Wear 2006;261:1012-23.

4. Allen T, Busby J, Meyer M, Petti D. Materials challenges for nuclear systems. Mater Today 2010;13:14-23.

5. Batchelor AW, Lam LN, Chandrasekaran M. Materials degradation and its control by surface engineering. 3rd ed. London: Imperial College Press; 2011.

6. Abu-odeh A, Galvan E, Kirk T, et al. Efficient exploration of the High Entropy Alloy composition-phase space. Acta Mater 2018;152:41-57.

7. Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.

8. Chen X, Han Z, Li X, Lu K. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv 2016;2:e1601942.

9. Xie Z, Hoffman M, Munroe P, Bendavid A, Martin P. Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers. Acta Mater 2008;56:852-61.

10. Xiong J, Zhang T, Shi S. Machine learning of mechanical properties of steels. Sci China Technol Sci 2020;63:1247-55.

11. Xiong J, Shi S, Zhang T. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater Des 2020;187:108378.

12. Ramakrishna S, Zhang T, Lu W, et al. Materials informatics. J Intell Manuf 2019;30:2307-26.

13. Du Y, Li K, Zhao P, et al. Integrated computational materials engineering (ICME) for developing aluminum alloys. J Aeronaut Mater 2017;37:1-17. (in Chinese)

14. Zhang W, Du Y, Peng Y, et al. Integrated computational materials engineering (ICME) for developing the cemented carbides. Mater Sci Technol 2016;24:1-28. (in Chinese)

15. Li B, Du Y, Qiu L, et al. Shallow talk about integrated computational materials engineering and materials genome initiative: ideas and practice. Mater China 2018;37:264-83. (in Chinese)

16. de Pablo JJ, Jackson NE, Webb MA, et al. New frontiers for the materials genome initiative. npj Comput Mater 2019;5:41.

17. Curtarolo S, Hart GL, Nardelli MB, Mingo N, Sanvito S, Levy O. The high-throughput highway to computational materials design. Nat Mater 2013;12:191-201.

18. Arslan HK, Shekhah O, Wohlgemuth J, Franzreb M, Fischer RA, Wöll C. High-throughput fabrication of uniform and homogenous MOF coatings. Adv Funct Mater 2011;21:4228-31.

19. Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput Mater 2019;5:70.

20. White P, Smith G, Harvey T, et al. A new high-throughput method for corrosion testing. Corros Sci 2012;58:327-31.

21. Shi Y, Yang B, Rack PD, Guo S, Liaw PK, Zhao Y. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Mater Des 2020;195:109018.

22. Zeng Y, Liu Y, Min Q, et al. Diffusion coefficients and atomic mobilities in fcc Ni-Cu-Mo alloys: experiment and modeling. Calphad 2020;71:102209.

23. Mao SS. High throughput combinatorial screening of semiconductor materials. Appl Phys A 2011;105:283-8.

24. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964;136:B864-71.

25. Kaufman L, Bernstein H. Computer calculation of phase diagrams: with special reference to refractory metals. New York: Academic Press; 1970.

26. Liu Y, Zhang C, Du C, et al. CALTPP: a general program to calculate thermophysical properties. J Mater Sci Mater Med 2020;42:229-40.

27. Chen L. Phase-field models for microstructure evolution. Annu Rev Mater Res 2002;32:113-40.

28. Szabó B, Babuška I. Introduction to finite element analysis: Formulation, verification and validation. West Sussex: John Wiley & Sons; 2011.

29. Lu X. Remarks on the recent progress of Materials Genome Initiative. Sci Bull 2015;60:1966-8.

30. Liu Z. First-principles calculations and CALPHAD modeling of thermodynamics. J Phase Equilib Diffus 2009;30:517-34.

31. Du Y, Sundman B. Thermophysical properties: key input for ICME and MG. J Phase Equilib Diffus 2017;38:601-2.

32. Du J, Jindal V, Sanders A, Ravi Chandran K. CALPHAD-guided alloy design and processing for improved strength and toughness in Titanium Boride (TiB) ceramic alloy containing a ductile phase. Acta Mater 2019;171:18-30.

33. Zhou J, Zhong J, Chen L, et al. Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c-Ti1-xAlxN coatings. Calphad 2017;56:92-101.

34. Povoden-karadeniz E, Lang P, Warczok P, Falahati A, Jun W, Kozeschnik E. CALPHAD modeling of metastable phases in the Al-Mg-Si system. Calphad 2013;43:94-104.

35. Chang K, Lou M, Xu K, Chen L, Yuan Y. Phase diagram, phase transformation and materials development of coatings served in harsh environments. Mater China 2021;40:401-16. (in Chinese)

36. Liu S, Chang K, Music D, et al. Stress-dependent prediction of metastable phase formation for magnetron-sputtered V1-xAlxN and Ti1-x AlxN thin films. Acta Mater 2020;196:313-24.

37. Lou M, Chen X, Xu K, et al. Temperature-induced wear transition in ceramic-metal composites. Acta Mater 2021;205:116545.

38. Xu K, Chang K, Yu M, Zhou D, Du Y, Wang L. Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset. J Mater Sci Mater Med 2021;89:186-98.

39. Grovenor C, Hentzell H, Smith D. The development of grain structure during growth of metallic films. Acta Metall 1984;32:773-81.

40. Einstein A. Elementare Theorie der Brownschen Bewegung. Z Elektrotech Elektrochem 1908;14:235-9.

41. Cantor B, Cahn R. Metastable alloy phases by co-sputtering. Acta Metall 1976;24:845-52.

42. Saksena A, Chien YC, Chang K, et al. Metastable phase formation of Pt-X (X=Ir, Au) thin films. Sci Rep 2018;8:10198.

43. Chang K, to Baben M, Music D, Lange D, Bolvardi H, Schneider JM. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Mater 2015;98:135-40.

44. Chang K, Music D, To Baben M, Lange D, Bolvardi H, Schneider JM. Modeling of metastable phase formation diagrams for sputtered thin films. Sci Technol Adv Mater 2016;17:210-9.

45. Wang SQ, Chen L, Yang B, et al. Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating. Int J Refract Metals Hard Mater 2010;28:593-6.

46. Alat E, Motta AT, Comstock RJ, Partezana JM, Wolfe DE. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding. J Nucl Mater 2016;478:236-44.

47. Karimi Aghda S, Music D, Unutulmazsoy Y, et al. Unravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin films. Acta Mater 2021;214:117003.

48. Paldey S, Deevi S. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Mater Sci Eng A Struct Mater 2003;342:58-79.

49. Spencer P, Holleck H. Application of a thermochemical data bank system to the calculation of metastable phase formation during PVD of carbide, nitride and boride coatings. High Temp Sci 1989;27:295-309.

50. Liu S, Chang K, Mráz S, et al. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Mater 2019;165:615-25.

51. Xu K, Liu S, Du Y, Dreval L, Cai G, Jin Z. Thermodynamic investigation of the Mg-Ni-Zn system by experiments and calculations and its application. J Alloys Compd 2019;784:769-87.

52. Chen L, Zhang Z, Huang Y, et al. Thermodynamic description of the Fe-Cu-C system. Calphad 2019;64:225-35.

53. Mayrhofer PH, Hörling A, Karlsson L, et al. Self-organized nanostructures in the Ti-Al-N system. Appl Phys Lett 2003;83:2049-51.

54. Endrino J, Århammar C, Gutiérrez A, et al. Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Mater 2011;59:6287-96.

55. Attari V, Cruzado A, Arroyave R. Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings. Acta Mater 2019;174:459-76.

56. Lind H, Pilemalm R, Rogström L, et al. High temperature phase decomposition in TixZryAlzN. AIP Adv 2014;4:127147.

57. Kutschej K, Mayrhofer P, Kathrein M, Polcik P, Mitterer C. A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications. Surf Coat Technol 2004;188-189:358-63.

58. Sui X, Li G, Jiang C, Yu H, Wang K, Wang Q. Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings. Int J Refract Metals Hard Mater 2016;58:152-6.

59. Chen L, Holec D, Du Y, Mayrhofer PH. Influence of Zr on structure, mechanical and thermal properties of Ti-Al-N. Thin Solid Films 2011;519:5503-10.

60. Riedl H, Holec D, Rachbauer R, et al. Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings. Surf Coat Technol 2013;235:174-80.

61. Xu YX, Chen L, Pei F, Du Y, Liu Y, Yue JL. Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings. Thin Solid Films 2014;565:25-31.

62. Mikula M, Plašienka D, Sangiovanni DG, et al. Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings. Acta Mater 2016;121:59-67.

63. Zou HK, Chen L, Chang KK, Pei F, Du Y. Enhanced hardness and age-hardening of TiAlN coatings through Ru-addition. Scripta Mater 2019;162:382-6.

64. Hannah DC, Yang J, Podsiadlo P, et al. On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies. Nano Lett 2012;12:4200-5.

65. Tang DM, Ren CL, Wang MS, et al. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett 2012;12:1898-904.

66. Zhang Z, Cui J, Chang K, et al. Deformation induced new pathways in silicon. Nanoscale 2019;11:9862-8.

67. Wang B, Zhang Z, Chang K, et al. New deformation-induced nanostructure in silicon. Nano Lett 2018;18:4611-7.

68. Kamimura Y, Edagawa K, Iskandarov A, Osawa M, Umeno Y, Takeuchi S. Peierls stresses estimated via the Peierls-Nabarro model using ab-initio γ-surface and their comparison with experiments. Acta Mater 2018;148:355-62.

69. Leonardi AK, Ober CK. Polymer-based Marine antifouling and fouling release surfaces: strategies for synthesis and modification. Annu Rev Chem Biomol Eng 2019;10:241-64.

70. Verma J, Khanna AS, Sahney R, Bhattacharya A. Super protective anti-bacterial coating development with silica-titania nano core-shells. Nanoscale Adv 2020;2:4093-105.

71. Zhu Y, Dong M, Chang K, Li J, Wang L. Prolonged anti-bacterial action by sluggish release of Ag from TiSiN/Ag multilayer coating. J Alloys Compd 2019;783:164-72.

72. Zhu Y, Dong M, Zhao X, Li J, Chang K, Wang L. Self-healing of TiSiN/Ag coatings induced by Ag. J Am Ceram Soc 2019;102:7521-32.

73. Rajabi A, Ghazali M, Syarif J, Daud A. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem Eng J 2014;255:445-52.

74. Liu Y, Wang Z, Sun Q, et al. Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800 °C in vacuum and air environment. Int J Refract Metals Hard Mater 2018;71:160-6.

75. Sveen S, Andersson J, M’saoubi R, Olsson M. Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates. Wear 2013;308:133-41.

76. Emmerlich J, Music D, Braun M, Fayek P, Munnik F, Schneider JM. A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC. J Phys D: Appl Phys 2009;42:185406.

77. Xu YX, Chen L, Pei F, Chang KK, Du Y. Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers: First-principles and experimental investigations. Acta Mater 2017;130:281-8.

78. Hintermann H. Advances and development in CVD technology. Mater Sci Eng A Struct Mater 1996;209:366-71.

79. Qiu L, Du Y, Wu L, et al. Microstructure, mechanical properties and cutting performances of TiSiCN super-hard nanocomposite coatings deposited using CVD method under the guidance of thermodynamic calculations. Surf Coat Technol 2019;378:124956.

80. Qiu L, Du Y, Wang S, et al. Mechanical properties and oxidation resistance of chemically vapor deposited TiSiN nanocomposite coating with thermodynamically designed compositions. Int J Refract Metals Hard Mater 2019;80:30-9.

81. Qiu L, Du Y, Wang S, et al. Through-process modeling and experimental verification of titanium carbonitride coating prepared by moderate temperature chemical vapor deposition. Surf Coat Technol 2019;359:278-88.

82. Sims CT, Stoloff NS, Hagel WC. Superalloys II: High-temperature materials for aerospace and industrial power. New York: Wiley; 1987.

83. Ruan J, Xu W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ′ region by machine learning and CALPHAD methods. Acta Mater 2020;186:425-33.

84. Nie H, Zhang T. Development of manufacturing technology on WC-Co hardmetals. Tungsten 2019;1:198-212.

85. Liu K, Wang Z, Yin Z, Cao L, Yuan J. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering. Ceram Int 2018;44:18711-8.

86. Huang S, Li L, Vanmeensel K, Van der Biest O, Vleugels J. VC, Cr3C2 and NbC doped WC-Co cemented carbides prepared by pulsed electric current sintering. Int J Refract Metals Hard Mater 2007;25:417-22.

87. Zhao C, Lu H, Liu X, Liu C, Nie Z, Song X. Strengthening cemented carbides by activated nano TaC. Int J Refract Metals Hard Mater 2021;95:105449.

88. Li N, Zhang W, Du Y, Xie W, Wen G, Wang S. A new approach to control the segregation of (Ta,W)C cubic phase in ultrafine WC-10Co-0.5Ta cemented carbides. Scripta Mater 2015;100:48-50.

89. Marquis EA, Hyde JM, Saxey DW, et al. Nuclear reactor materials at the atomic scale. Mater Today 2009;12:30-7.

90. Karoutas Z, Brown J, Atwood A, et al. The maturing of nuclear fuel: past to accident tolerant fuel. Prog Nucl Energy 2018;102:68-78.

91. Katoh Y, Snead LL, Szlufarska I, Weber WJ. Radiation effects in SiC for nuclear structural applications. Curr Opin Solid State Mater Sci 2012;16:143-52.

92. Nadeau JS. Very high pressure hot pressing of silicon carbide. Am Ceram Soc Bull 1973;52:170-4.

93. Liu M, Yang Y, Wei Y, et al. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering. Ceram Int 2019;45:19771-6.

94. Liu Y, Liu R, Liu M. Improved sintering ability of SiC ceramics from SiC@Al2O3 core-shell nanoparticles prepared by a slow precipitation method. Ceram Int 2019;45:8032-6.

95. Shao J, Li M, Chang K, et al. Fabrication and characterization of SPS sintered SiC-based ceramic from Y3Si2C2-coated SiC powders. J Eur Ceram Soc 2018;38:4833-41.

96. Xu K, Zou H, Chang K, et al. Thermodynamic description of the sintering aid system in silicon carbide ceramics with the addition of yttrium. J Eur Ceram Soc 2019;39:4510-9.

97. Gerdes MH, Witte AM, Jeitschko W, Lang A, Künnen B. Magnetic and electrical properties of a new series of rare earth silicide carbides with the compositionR3Si2C2(R=Y, La-Nd, Sm, Gd-Tm). J Solid State Chem 1998;138:201-6.

98. Xu K, Chen L, Chang K, et al. Thermodynamic description of the Dy-Si-C system in silicon carbide ceramics. Calphad 2020;68:101738.

99. Xu K, Chang K, Zhou X, et al. Thermodynamic descriptions of the light rare-earth elements in silicon carbide ceramics. J Am Ceram Soc 2020;103:3812-25.

100. Lipkina K, Hallatt D, Geiger E, et al. A study of the oxidation behaviour of FeCrAl-ODS in air and steam environments up to 1400 °C. J Nucl Mater 2020;541:152305.

101. Briggs SA, Edmondson PD, Littrell KC, et al. A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater 2017;129:217-28.

102. Ejenstam J, Thuvander M, Olsson P, Rave F, Szakalos P. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C. J Nucl Mater 2015;457:291-7.

103. Chang K, Meng F, Ge F, Zhao G, Du S, Huang F. Theory-guided bottom-up design of the FeCrAl alloys as accident tolerant fuel cladding materials. J Nucl Mater 2019;516:63-72.

104. Vilar R, Santos E, Ferreira P, Franco N, da Silva R. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. Acta Mater 2009;57:5292-302.

105. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science 2002;296:280-4.

106. Pomeroy M. Coatings for gas turbine materials and long term stability issues. Mater Des 2005;26:223-31.

107. Fan L, Liu L, Yu Z, Cao M, Li Y, Wang F. Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet Oxygen flow at 600 °C. Sci Rep 2016;6:29019.

108. Shu Y, Wang F, Wu W. Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor. Oxid Met 2000;54:457-71.

109. Cao M, Liu L, Yu Z, Fan L, Ying L, Wang F. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 °C. Corros Sci 2018;133:165-77.

110. Xu K, Chang K, Du Y, Wang L. Design of novel NiSiAlY alloys in marine salt-spray environment: Part I. Al-Si-Y and Ni-Si-Y subsystems. J Mater Sci Mater Med 2021;88:66-78.

111. Yu J, Guo S, Chen Y, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning. Intermetallics 2019;110:106466.

112. Yu J, Wang C, Chen Y, Wang C, Liu X. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data. Mater Des 2020;195:108996.

113. Rajan K. Materials informatics. Mater Today 2005;8:38-45.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/