1. Xiang XD, Sun X, Briceño G, et al. A combinatorial approach to materials discovery. Science 1995;268:1738-40.
2. Xiang X, Wang G, Zhang X, Xiang Y, Wang H. Individualized pixel synthesis and characterization of combinatorial materials chips. Engineering 2015;1:225-33.
3. Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library. Science 1998;279:1712-4.
4. Zhao L, Zhou Y, Wang H, et al. High-throughput synthesis and characterization of a combinatorial materials library in bulk alloys. Metall Mater Trans A 2021;52:1159-68.
5. Liu Y, Hu Z, Suo Z, et al. High-throughput experiments facilitate materials innovation: a review. Sci China Technol Sci 2019;62:521-45.
6. Bligaard T, Jóhannesson GH, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK. Pareto-optimal alloys. Appl Phys Lett 2003;83:4527-9.
7. Reed R, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 2009;57:5898-913.
8. Jong M, Chen W, Geerlings H, Asta M, Persson KA. A database to enable discovery and design of piezoelectric materials. Sci Data 2015;2:150053.
9. Ong SP, Wang L, Kang B, Ceder G. Li-Fe-P-O2 phase diagram from first principles calculations. Chem Mater 2008;20:1798-807.
10. Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 2013;68:314-9.
11. Brun F, Yoshida T, Robson J, Narayan V, Bhadeshia H, Mackay D. Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models. Mater Sci Technol 2013;15:547-54.
12. Sourmail T, Bhadeshia HKDH, Mackay DJC. Neural network model of creep strength of austenitic stainless steels. Mater Sci Technol 2013;18:655-63.
13. Joo M, Ryu J, Bhadeshia HKDH. Domains of steels with identical properties. Mater Manuf Process 2009;24:53-8.
14. Khalaj G, Nazari A, Pouraliakbar H. Prediction of martensite fraction of microalloyed steel by artificial neural networks. NNW 2013;23:117-30.
15. Khalaj G. Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels. Neural Comput & Applic 2013;23:779-86.
16. Faizabadi MJ, Khalaj G, Pouraliakbar H, Jandaghi MR. Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels. Neural Comput & Applic 2014;25:1993-9.
17. Pouraliakbar H, Khalaj M, Nazerfakhari M, Khalaj G. Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. J Iron Steel Res Int 2015;22:446-50.
18. Narimani N, Zarei B, Pouraliakbar H, Khalaj G. Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels. Measurement 2015;62:97-107.
19. Conduit B, Jones N, Stone H, Conduit G. Design of a nickel-base superalloy using a neural network. Mater Des 2017;131:358-65.
20. Conduit B, Jones N, Stone H, Conduit G. Probabilistic design of a molybdenum-base alloy using a neural network. Scr Mater 2018;146:82-6.
21. Conduit B, Illston T, Baker S, et al. Probabilistic neural network identification of an alloy for direct laser deposition. Mater Des 2019;168:107644.
22. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci 2018;150:230-5.
23. Arisoy YM, Özel T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy. Mater Manuf Process 2014;30:425-33.
24. Khalaj G, Pouraliakbar H. Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels. Ceram Int 2014;40:5515-22.
25. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 2017;8:15679.
26. de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 2016;6:34256.
27. Correa-baena J, Hippalgaonkar K, van Duren J, et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2018;2:1410-20.
28. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004;375-377:213-8.
29. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.
30. Ranganathan S. Alloyed pleasures: multimetallic cocktails. Curr Sci 2003;85:1404-6.
31. Fazakas É, Zadorozhnyy V, Varga L, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int J Refract Metals Hard Mater 2014;47:131-8.
32. Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J Alloys Compd 2017;694:869-76.
33. Chang C, Titus MS, Yeh J. Oxidation Behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv Eng Mater 2018;20:1700948.
34. Cao P, Ni X, Tian F, Varga LK, Vitos L. Ab initio study of AlxMoNbTiV high-entropy alloys. J Phys Condens Matter 2015;27:075401.
35. Senkov O, Wilks G, Miracle D, Chuang C, Liaw P. Refractory high-entropy alloys. Intermetallics 2010;18:1758-65.
36. Senkov O, Wilks G, Scott J, Miracle D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011;19:698-706.
37. Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun 2015;6:7748.
38. Wu Y, Cai Y, Chen X, et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des 2015;83:651-60.
39. Melnick A, Soolshenko V. Thermodynamic design of high-entropy refractory alloys. J Alloys Compd 2017;694:223-7.
40. Han Z, Luan H, Liu X, et al. Microstructures and mechanical properties of Ti NbMoTaW refractory high-entropy alloys. Materials Science and Engineering: A 2018;712:380-5.
41. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater 2018;61:2-22.
42. Dasari S, Chaudhary V, Gwalani B, et al. Highly tunable magnetic and mechanical properties in an Al0.3CoFeNi complex concentrated alloy. Materialia 2020;12:100755.
43. Chaudhary V, Chaudhary R, Banerjee R, Ramanujan R. Accelerated and conventional development of magnetic high entropy alloys. Mater Today 2021;49:231-52.
44. Sun Y, Lu Z, Liu X, et al. Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data. Appl Phys Lett 2021;119:201905.
45. Wen C, Wang C, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning. Acta Mater 2021;212:116917.
47. Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677-86.
48. Gao MC, Yeh JW, Liaw PK, Zhang Y. High-entropy alloys: fundamentals and applications. Switzerland: Springer International Publishing; 2016.
49. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 2001;12:181-201.
50. Chang C, Lin C. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2:1-27.
51. Breiman L. Random forests. Mach Learn 2001;45:5-32.
53. Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10:534-8.
54. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 2012;132:233-8.
55. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys 2011;109:103505.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.